
Historical motivation
What’s new

Summary

Consolidation of expl3

Morten Høgholm

LATEX Project

TUG 2009, Notre Dame University

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Outline

1 Historical motivation

2 What’s new

3 Summary

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

A mixture

TEX is both macro programming and document level language
plain TEX and LATEX provide a solution: @ is used to signal
internal command.
However, many internal commands do not use @, e.g., all
primitives.
Many good names taken: \box, \special, etc.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Typical problems

This is the source of some typical communications with TEX.
Use of \@ doesn’t match its definition

You can’t use \spacefactor in vertical (or math)
mode.

Spurious spaces.
% is a very common symbol when doing definitions.

All because TEX and LATEX have no proper low-level API.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

A real API

Measures have been taken to improve the situation
A programming environment where all white space is ignored
A consistent naming scheme using module name, description
and possibly data type.
_ used to enhance readability of names:
\c_module_magic_int

Colon used in function names to signal argument signature:
\foo_bar:nn is a function taking two arguments.
This is turned on and off with \ExplSyntaxOn and
\ExplSyntaxOff

Just load the package expl3

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

An example

\seq_new:N \g_mho_example_seq
\seq_gpush:Nn \g_mho_example_seq {abc}

\seq_gpush:Nn is a function from the seq module
(sequences)
N is single token, n is argument in braces.
This globally pushes its second argument onto the global stack
\g_mho_example_seq

You can also pop:
\seq_gpop:NN \g_mho_example_seq \l_mho_target_tl

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Expansion control

As mentioned in other talks, expansion control is not trivial
You have to know where to insert \expandafter
You have to know your 2n−1 table to insert the magic
number of \expandafter

We use the argument signature to make this easier.
x means full expansion (with \edef), then pass on to n.
o means expand once, then pass on to n.
c means construct control sequence (with
\csname. . . \endcsname), then pass on to n.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

An example, cont.

As before, but we first have to construct the name of the
sequence.
\seq_gpush:cn {g_mho_example_seq} {abc}

Same result as before.
No use of \expandafter or \csname.
The code is much easier to read and maintain.
x expansion:
\seq_gpush:cx {g_mho_example_seq}

{ \tl_if_empty:nTF {#1} {empty}{#1} }

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Renaming

The first version of expl3 was fairly consistent in its naming
But some parts needed a second go.
\def:Npn → \cs_set:Npn and the set operation is now
\long.
\let:NN → \cs_set_eq:NN

This way all data types have the operations set, set_eq, new
and new_eq

Token list pointers (tlp) changed name to just token lists (tl).
Using tokens in the input stream is simple now: \use_ii:nnn
is equal to \@secondofthree from LATEX.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Retrieving value of a register

Expansion control improved the situation a lot. Previously, you
could do
\seq_gpush:No \g_mho_example_seq

{ \int_use:N \l_mho_magic_int}

Worked, but required that you knew \int_use:N used exactly
one expansion to return the result (because it is the \the
primitive).
But if adding from a different kind of container:
\seq_gpush:No \g_mho_example_seq

{ \l_mho_string_tl}

So different syntax for different data types
No error checking

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Retrieving value of a register, cont.

Think about what you want rather than how!
V for value of single token, v for the combination of c and V.
The two examples from above then become
\seq_gpush:NV \g_mho_example_seq \l_mho_magic_int
\seq_gpush:NV \g_mho_example_seq \l_mho_string_tl

No need to know how the data type is implemented
— or how many expansions it takes to get to the value.
This also provides error checking for malformed csnames, i.e.,
those with meaning \relax.
! Undefined control sequence.
\exp_eval_error_msg:w ...erroneous variable used!

l.15 \tl_set:Nv \l_tmpa_tl {g_oops_tl}

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Defining functions

In TEX a function has a parameter text (#1#2...)
In LATEX we have \newcommand[num]{. . . } but no delimited
arguments
With the functionality built into expl3 and the document level
layer (xparse), you rarely need delimited arguments.
The argument signature already tells how many arguments the
function expects.
So we use that information!
\cs_new:Nn \mho_function:nnn {‘‘#1,#2,#3’’}

You can still use the primitive parameter text. This is the
same:
\cs_new:Npn \mho_function:nnn #1#2#3 {‘‘#1,#2,#3’’}

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Conditional processing

New strategy
Read arguments, and perform (complicated) tests
Then return a state, e.g., true, false, error, . . .

Then in the second step we take the state and then use it:
TF true state returns first argument, false state returns second:

\foo_if_bar:nTF{〈arg〉}{〈true〉}{〈false〉}
T true returns the argument, false returns nothing.

\foo_if_bar:nT{〈arg〉}{〈true〉}
F false returns the argument, true returns nothing.

\foo_if_bar:nF{〈arg〉}{〈false〉}
p returns boolean true or false. \foo_if_bar_p:n{〈arg〉}

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Conditional processing, cont.

Here is a nice example from the boolexpr package, recently released
to CTAN.
Simple task

Take a single token argument, perform a test and then return
one of two arguments following it, i.e., a
\foo_if_bar:NTF〈arg〉{〈true〉}{〈false〉}
If argument is one of \the, \number, \dimexpr, \glueexpr
or \muexpr choose the true value, otherwise choose the false
value.

Here is how it is done (look closely!)
Now what if I wanted a version that only returned the true value
and returned nothing for false? \foo_if_bar:NT〈arg〉{〈true〉}

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Conditional processing, cont.

Many ways to do this. The same but using the new expl3 interface.

\prg_new_conditional:Nnn \bex_test_Eval:N {TF,T}{
\ifx#1\the \prg_return_false:
\else\ifx#1\number \prg_return_false:
\else\ifx#1\dimexpr \prg_return_false:
\else\ifx#1\glueexpr \prg_return_false:
\else\ifx#1\muexpr \prg_return_false:
\else \prg_return_true:
\fi\fi\fi\fi\fi

}

This generates both \bex_test_Eval:NTF and
\bex_test_Eval:NT but not the F and p variants.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Natural comparison

Number comparison in TEX is tricky. Often you insert \relax
many places to ensure scanning has stopped.
They may stay behind in certain contexts!
Natural is to ensure this happens automatically:
\intexpr_compare_p:nNn {5+3}<{2-\l_tmpa_int}

More natural is to remove most of the braces
\intexpr_compare_p:n {5+3 < 2-\l_tmpa_int}

Also supports <=, !=, >=.

Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Boolean expressions

We now have a boolean expression parser
Supports natural input syntax with

&& for And
|| for Or
! for Not
() for grouping

\bool_if_p:n{
\intexpr_compare_p:n {1=1} &&
(

\intexpr_compare_p:n {2=3} ||
\intexpr_compare_p:n {4=4} ||
\intexpr_compare_p:n {1=\error} % is skipped

) &&
!(\intexpr_compare_p:n {2=4})

}
Morten Høgholm Consolidation of expl3

Historical motivation
What’s new

Summary

Summary

All parts of expl3 have undergone revision
No big changes expected – only extensions
Appears in TEX Live 2009.
Used in higher level modules (xparse, template) plus finding its
way into other packages.

Morten Høgholm Consolidation of expl3

	Historical motivation
	What's new
	Summary

