IATEX3: from local to global
A brief history and recent developments

Will Robertson and Frank Mittelbach

This is all Will’s fault

From: Frank Mittelbach
Date: 27 June 2012

Will wrote:

> I'm still marking exams today, but I can put time
aside tomorrow to produce some solid material.
Because this is largely my fault, and to take the
worry off you here, would you like to assume that
I'11 produce the whole talk?

V V V V

I sure would :-)

Outline

History

expl3 timeline

1991 Original kernel
1998 ‘Modern’ beginning
2004 Morten

2008 Will

2009 Joseph

2011 Bruno

Paulo Roberto Massa Cereda

expl3 history

2004
MORTEN

2012
JOSEPH+BRUNO

News

200971
2009/2
201071
2010/2
20111
201172
20121
2012/2

items

Test suites and reconsidering interface.

Revamp naming; TL2009. Arg. spec. and I3msg.
Rewrite of xparse and xtemplate.

siunitx and fontspec. xhead; xcoffin; 13fp; I/O.
LPPL OSI; Stack Exchange. 13fp; 13coffin.

Big Bang; xgalley.

Native drivers; 13regex. LDB.

[3fp (exp.); @@.

Code frequency

B0k =
40k =

206 =

206 =

Additions and Daletions

40k =

B0k =

80k =

Additions and Deletions per week and Total lines

- 240k

- 200k
- 180K
- 180K

- 140k

s8u [eloL

- 120

- 100k

- 80k

- 60k

- 40k

- 20

Aspects to IATEX3

Multiple overlapping concepts.

— Programming layer expl3:
fontspec/siunitx users (etc.) are ‘using’ IATEX3

— 13in2e:
xparse / xtemplate / xcoffins

— Typesetting research:
xgalley / xor

— Kernel:
All of the above

[ATEX3 is not monolithic.

Architecture

cmp Logical

swemirite
keyiralue
settings an
individual

Document level syntax specs

|
_ wse”
|
|
|
|
|
|
|

Class Design Layer

| Class functioral p | Class laym

-
| |

Typesetting Element Layer

-
data types | ‘ graphics Joolar pragramming logie |

forts / galleys flanguages |

Outline

Programming layer

expl3 is the foundation

— Supports pdfTEX and X3TgX and LualgX.
All three are in active use.

— Abstraction for general programming concepts;
avoid having to remember ‘special tricks’
and reinvent the wheel.

— Conceived in the 90s; too slow then.
Iterated and tested over the next decade;
Consolidated in the last 5 years.

— People are using it!
github.com/jcsalomon/xpeek

expl3 modules

Programming:
— basics / expan / quark / prg / token
Data types:

— int/ dim / skip / box
— tl/seq/ clist/ prop

‘Complex’ data types/modules:

— msg/ keys / file
— fp/ coffins / (regex?)

Increasing complexity

\expandafter\ifx\csname foobar\endcsname\relax
<not exist>

\else
<exist>

\fi

This one...

\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname foobar\endcsname\relax
<not exist>
\else
<exist>
\fi

And there is much worse! We want to mitigate complexity.

\cs_if_exist:NTF \foobar {<exist>} {<not>}
\cs_if_exist:cTF {foobar} {<exist>} {<not>}

One of my favourite tricks

In plain:

\let\foo\bar

\expandafter\let\csname foo\expandafter
\endcsname\csname bar\endcsname

In expl3:

\cs_set_eq:NN \foo \bar
\cs_set_eq:cc {foo} {bar}
\cs_set_eq:Nc \foo {bar}
\cs_set_eq:cN {foo} \bar

More expansion

A difficult case:
\foobar{abc}{\expandme}

How to expand \expandme once before this is seen by \foobar?

More expansion

A difficult case:

\foobar{abc}{\expandme}

\expandafter\foobar\expandafter
{\expandafter a\expandafter b\expandafter c\expandafter}%
\expandafter{\expandme}

More expansion

A difficult case:

\xfoobar{abc}{\expandme}

More expansion

A difficult case:

\xfoobar{abc}{\expandme}

\def\xfoobar#1#2{\@foobar{#2}{#13}}

More expansion

A difficult case:

\xfoobar{abc}{\expandme}

\def\xfoobar#1#2{\@foobar{#2}{#13}}
\def\@foobar#1#2{\expandafter\@efoobar\expandafter{#1}{#2}}

More expansion

A difficult case:

\xfoobar{abc}{\expandme}

\def\xfoobar#1#2{\@foobar{#2}{#13}}

\def\@foobar#1#2{\expandafter\@efoobar\expandafter{#1}{#2}}
\def\@@foobar#1#2{\foobar{#2}{#13}}

More expansion

A difficult case:

\xfoobar{abc}{\expandme}

\def\xfoobar#1#2{\@foobar{#2}{#13}}
\def\@foobar#1#2{\expandafter\@efoobar\expandafter{#1}{#2}}
\def\@@foobar#1#2{\foobar{#2}{#13}}

Now \foobar finally receives the arguments with correct prior
expansion

More expansion

In expl3:

\foo_bar:no {abc} {\expandme}

\cs_new:Npn \foo_bar:nn #1#2 {...}

More expansion

In expl3:

\foo_bar:no {abc} {\expandme}

\cs_new:Npn \foo_bar:nn #1#2 {...}
\cs_generate_variant:Nn \foo_bar:nn {no}

Outline

Internal interfaces

A problem with IATEX 2¢

— 99% of the 2e kernel used by packages

— We cannot change the internals of the kernel!
— If only people didn't mess around with internals.
— Only documented interfaces should be used.

How?

— Can't (reasonably) enforce this in code.
— Can indicate this with code conventions.
— Can use \tl_count:n.

— Cannot use __tl_count:n!

(Or if you do don’t blame us!)

— TgX does not have name-spacing.
— Let’s help with docstrip.
— Makes code easier to write.

— Helps enforce conventions.

IATEX 2 example

\begin{figure}...\end{figure}

All floats defined with \@float...\end@float.

Internally, uses \@xfloat.

Internal code in expl3 (.sty)

\cs_new_protected:Npn \seq_remove_duplicates:N #1

{
__seqg_remove_duplicates:NN \seq_set_eq:NN #1

}

\cs_new_protected:Npn __seq_remove_duplicates:NN #1#2
{

\seqg_clear:N \1__seq_remove_seq

\seq_map_inline:Nn #2
{

\seq_if_in:NnF \1__seq_remove_seq {##1}
{ \seq_put_right:Nn \1__seq_remove_seq {##1} }

}

#1 #2 \1__seq_remove_seq

Internal code in expl3 (.dtx)

\cs_new_protected:Npn \seq_remove_duplicates:N #1
{
\@@_remove_duplicates:NN \seq_set_eq:NN #1
}

\cs_new_protected:Npn \@@_remove_duplicates:NN #1#2
{
\seqg_clear:N \1_@@_remove_seq
\seq_map_inline:Nn #2
{
\seq_if_in:NnF \1_@@_remove_seq {##17}
{ \seqg_put_right:Nn \1_@@_remove_seq {##1} }
}
#1 #2 \1_@@_remove_seq

@@ summary

\tl_count:n is ‘public’.
\@@_count:n = __tl_count:n is ‘internal’.
__tl_to \e@@_ doesn’t save many letters here...

...but consider __fontspec_ !

Outline

New features of expl3

‘Quick’ sorting in 13sort

\clist_set:Nn \1_foo_clist { 3, @1 , -2 , 5, +1 }

\clist_sort:Nn \1_foo_clist

{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_reversed: }
{ \sort_ordered: }

}

Produces: ‘-2,+1,01,3,5’

TeX by Topic has an example of a lexicographic comparison.

Expandable floating point

— TeX uses integer arithmetic for everything
even dimension calculation in multiples of 1sp.

— Some have written maths modules for fixed point maths.
— Joseph wrote floating point maths.

— Bruno made it expandable!

Example

This code:

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff

\calcnum {
round (200 pi * sin (2.3 *5) , 2)
}

Produces: 6.2784 x 102

Coffins example

AN ANTHOLOGY

Z]

Regular expressions in 13regex

JWZ:

Some people, when confronted with a problem, think
“I know, I'll use regular expressions.”
Now they have two problems.

But regular expressions are useful!

What is regexp

Advanced pattern matching.

\tl_set:Nn \1_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl

— ‘This cat.’

\tl_set:Nn \1_my_tl { This~cat~your~cat }
\regex_replace_all:nnN { \w+ } { \@ , } \1l_my_tl

’

— ‘This, cat, your, cat,

support tokens

— ‘\c{begin} \cB. (\c[*BEJ].*) \cE.’
matches: \begin{<anything without {}>}

— [a-o0g-z\cC.] matches any lowercase latin letter except p,
as well as control sequences.

Available functions:

— Match (TF)
— Count

— Extract

— Split

— Replace

Poor man’s grep (for Windows users)

\ior_new:N \1_grep_stream

\cs_new:Npn \expl_grep:nn #1 #2

{
\ior_open:Nn \1_grep_stream {#2}
\ior_str_map_inline:Nn \1l_grep_stream
{
\regex_match:nnT {#1} {##1} { \texttt{##1}\\ }

}

\ior_close:N \1_grep_stream

}

\expl_grep:nn {\\usepackage} {\jobname}

Poor man’s grep (for Windows users)

This is the output:

\usepackage{expl3,13regex,13sort}
\usepackage{calc, graphicx}
\usepackage{metalogo, fancyvrb}
\usepackage{fontspec,siunitx}
\usepackage{biblatex}
\usepackage{xparse, siunitx}
\expl_grep:nn {\\usepackage} {\jobname}
\expl_grep:nn {\\usepackage} {\jobname}

Conclusion

The Hitch-Hiker’s Guide to LaTeX3
by Andrew Stacey (TgX.sx Community Blog)

As with the original Hitch-Hiker’s Guide, this blog post won't
actually be all that useful to someone wanting to truly explore
LaTeX3. It's more of a “What | did on my holidays” kind of guide.
I've recently had my first go at doing some coding with LaTeX3
and | thought it might be interesting to record my experiences.

Will I use LaTeX3 again? Absolutely. | wouldn’t choose it for a
non-TeX situation, but if it'’s something to be done within TeX
then LaTeX3 is definitely high up on the list of choices. Do |
expect an easy ride? Not at all. But at the end, | expect a sense of
accomplishment not quite like coding in any other language.

Conclusion

— IATEX3 shouldn’t be thought as monolithic
— Programming layer is solid and being used by others
— Document interface layer for IATEX 2¢ available

— Current team focus is on the typesetting foundation layer

» font selection
» output routines
> page layout

	History
	Programming layer
	Internal interfaces
	New features of expl3

