Through the Looking Glass
... and what Alice found there

TUG Conference 2017, Bachotek

Frank Mittelbach
frank.mittelbach@latex—project.org
April 29,2017

Contents John Tenniel, 157
(1 Introductionl 1 “Well, in OUR country,” said Alice, still panting a

little, “you’d generally get to somewhere else—if
[2° Dynamic programming] 2 you ran very fast for a long time, as we’ve been

doing.”
1
[Aesthetics only]| 6 “A slow sort of country!” said the Queen. “Now,

HERE, you see, it takes all the running YOU can
do, to keep in the same place. If you want to get

1 From the looking g] ass story ?omew};ler? else, you must run at least twice as
ast as that!”

Time and space Time and space

‘ Placing figures on pages (general formula) ‘

pages + figures — 1 ”
figures -

‘ Placing figures on pages (one per page maximum)
pages '\ _
figures)

Examples (assuming 1 second per quality assessment)

e 16 pages, 9 figures — 11440 trials — 3.1 hours

e 90 pages, 28 figures — 1.548 x 10?3 trials — 4.91 x
1015 years

So what now?
[B

Can it be helped a little?

Takayama 2009

2 The dynamic programming method-
ology

Defining the problem

Input model

o A sequence of text blocks T' = {t1,t2,...,tn}
o A sequence of (figure) floats F' = { f1, fa, ..., fe}

e (possibly some more float sequences — ignored for
now)

Layout model

o A sequence of spreads Sy, Ss, ..., Sk

with columns/pages (sizes may differ)

with areas for floats

constraints for the filling process

some further auxiliary information

Defining the problem (continued)

Paginations

e Amappingp: TUF — {1,2,...,k} such that

p(ti)
p(fi)

p(t;) forl1<i<j<n
p(f5) forl<i<j<¥¢

INIA

e P is the set of all possible paginations of 7" U F'

Objective function (cost function)

e Afunction@: P — R

Optimization task

e We seek: pg € P such that Q(pg) < Q(p) forall p € P

What can we do?
(Getting requirements for Q)

Example 1: Make a gut decision
e Le, look at each pagination (for a second) and decide
e Clearly not workable:

— Already for “Through the Looking Glass” that
takes longer than the current age of the universe

Example 2: Base decision on call-out/float distance
e Le., how many pages do I need to turn to reach a float

- Linear formula: solvable using dynamic pro-
gramming

- Quadratic formula: NP-complete as shown by
Plass

Example 3: Recto/verso criteria

e E.g., penalize if call-out and float are on the same type
of page

- Again NP-complete as shown by Plass

The dynamic programming methodology The dynamic programming methodology
When possible? Applying it

Problem consists of overlapping subproblems ‘ If dynamic programming is applicable we can

e Clearly, that’s the case (with sensible subproblems) e solve each subproblem only once

. b
e We denote with Ps,, _s,).q to mean e and remember the result

- all paginations of text blocks t,, ..., t, and fig- i i i
ures f, ..., fo onto spreads S;, ..., S; e construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems
e Examples:

1,80 81,150 1,150
Psisaytz X Prsssozd - CPsy, 8014 Example:
1,110 111,150 1,150 :
Psi,s12 X Psa)sa C P81
1.80 81,110 1,110 e Find the best way to put¢,,...,%, and fq,..., f; onto
Psisare X Psaypg C Psi.sine spreads Sy,...,S;:
Lb
Psis)1d
Problem exhibits optimal substructure (optimality principle)
Lb 1, +1,b
P(Slau-:si)l,d - P(517~-75i—1)1,g X P(Si)g-&-Ld
. . 1,b 1,a’ ‘+1,b
e The tr1cky bit ’P(Shm»si)l,d D P(S17~--7Si—1)1,g’ X P(Si)z/+1,d

e A problem exhibits optimal substructure if

- the optimal solution to the problem incorporates
only optimal solutions to its subproblems;

- the subproblems can be solved independently. The dynamic programming methodology

e Now what does this mean? Applying it

Example continued:

The dynamic programming methodology e In other words, we have
Optimality principle
1,b 1,a a+1,b
,P(Sl»--wsi)l,d = U P(Sla-<~75i—1)l,c X P(Si)c-q—l,d
What does it mean? 1<a<b
1<e<d

e Assume we search for py with Q(pg) minimal and o S0 if we know the best way for each

1,150
Po € P(s,,...50)14

1,
P(51;~~,5i71)1,?
o Assume further that we find then all we need to do is to calculate all the
1,35 36,80 81,110 111,150
Po € P(Sl)1710 X 7)(52)272 X ,P(Ss)(z)y(z) X 7)(54)3,4 P(S)Zill,db

and apply @ to determine the best solution.
... then the optimality principle means that

e po (suitably restricted) is also an optimal solution for
1,35 1,80 1,110
P P(sy s2)102 P(si,...55)12

e and many others, e.g., 79(527.“,54)3?4150 etc.

The dynamic programming methodology
Why does it sometimes fail?

Example continued:

e Suppose we have a pagination p = p’ x p” with

1,b
PEPES,. 514

)

1, +1,b
and P E€Ps, s e P EPS) et

e Then we need to be able to calculate Q(p) from Q(p’)
and Q(p”)

e For example: Q(p) = Q(¥) + Q") + Q(Ps,,...s, 1)1c)

But for the NP-complete cases this is

e not possible as the “quality” depends on where the
call-out is (within p’) in relation to the float (in p"’)

e not depending on a fixed value based on
1,
P(Sly-u,si—l)l,z

3 The algorithms

The basic algorithm
(no floats)

e Let A = {ag,a1,as,...} be elements from the text
stream that have been identified as places where we
can end a spread (plus info how we got there)

e Initially this contains just a, (start of document)

Main loop through all elements t* € T’ ‘

e Check if we can successfully build a spread from one
or more ¢ € A to the current ¢*

e For each new spread that ends, check which path
gives the best result (according to ()) and add that one
as a new element to A

— (here we need the optimality principle)

e Whenever some a; € A is too far away from ¢* (over-
full spread) remove it from A

The basic algorithm continued
(no floats)

Finishing off

e Eventually, we will reach the end of the document ...

o ...then work from the best solution backwards
through all the elements we passed through

o That defines our optimal solution

Complexity

o The outer loop has n elements
e The inner loop is the size of A which is

- bounded by a constant if all spreads have the
same structure — O(c-n) = O(n)

- otherwise it can be at most n — O(n?)

The extended algorithm
(with floats)

‘ When starting up

e Compile info about each call-out

When t* is identified as a new endpoint for a spread

e Prepare a list of all possible float placements for the
next spread (conservative)

e Add anew a € A for each of them

When finishing off ‘

e We need to deal with the case of unplaced floats

— We can, for example, add them on further
spreads (with some extra costs)

- or drop them as “non-solutions”

The extended algorithm continued
(with floats)

Complexity

e The outer loop has n elements

e The inner loop is the size of A:

— The number of elements ending in a different t*

is either
% O(n) for fixed spread structure
x or O(n?) otherwise

— For each new ¢* we compile the set of all po-
tentially possible float placements for the next
spread

* This number is bounded by a constant (avail-

able space!)

* Any of the available floats might be the first

e Thus

— If the spread all have the same structure — O(n-¢)

- otherwise — O(n? - ¢)

e Floats add a complexity factor in the size of their
stream!

Float rules (structuring the approach)
Different types of rules, continued

‘ Rules for placement ‘

e There cannot be more than x floats on a single page

o The top area of a column may receive a maximum of y
floats, the bottom area of z floats

e If more than 2% of the space on a column is occupied
by floats then no normal text will appear in that col-
umn

e Every column must contain a minimum of 2% of text

e All the floats are stacked vertically vertically at the
top of a page; alternative: they can appear at the top
or bottom (but not in both places)

e Floats can be horizontally placed if they are visually
compatible (e.g., have identical heights); might also be
requested for floats placed in adjacent columns

Float rules (structuring the approach)
Different types of rules, continued

\ Rules for the inner structure of a float \

Float rules (structuring the approach)
Different types of rules

o Absolute rule: placement not allowed if violated

e Preference rule: placement is (un)favorable

Call-out / float relations ‘

o Floats are placed in order of their first/main call-out
- Different streams are (usually) independent
o A float must appear after its call-out ...

— same or later column (usual approach)
— strictly after (fairly restrictive)

— same page or spread or later (difficult with
greedy algorithms; involves reformatting)

— must be placed in their subsection (dangerous)

— must be visible from the call-out (very danger-
ous)

e Position of caption/legend based on float size
e Position of caption/legend based on placement

o Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions) ‘

e Too many unplaced floats and z previous columns
have no floats allocated

- But documents may have many call-outs close by
(danger to drop too much) But only if the floats
could have placed there (difficult to check)

e Distance between call-out and float too large

— Described this way creates dependencies be-
tween subproblems, thus violate the optimality
principle (difficult to implement correctly)

e Otherideas...

— Topic for further research!

Applying float rules ...

Evaluate when deciding next float placement

e Pruning:
- drop as soon as possible
o Absolute rules (for a spread):
— drop if violated
e Preference rules (for a spread):

— add cost charge

Evaluate when adding a call-out to a trial placement ‘

e Call-out constraint rules (absolute):
- remove a € A if violated
o Call-out constraint rules (preference):

— add cost chargetoa € A

4 Aesthetics only

Designs without call-out constraints
(A bit of a horror scenario)

John Tenniel, 1870

Designs without call-out constraints
(A bit of a horror scenario)

\ What does this mean? \

e No rules that favor a certain region (such as low dis-
tance from the call-out)

e The objective function only implements local aesthet-
ics

o Thus the placement of floats mainly affects the quality
through a better or worse fit of the text blocks

‘ Consequences

e Dynamic programming would still work, as we can
interpret this as the case in which
— all call-outs are at the beginning of the document
— the objective function adds a zero cost for the

distance from the call-out

e But that means that pruning not really possible (what
would be the criteria?)

Designs without call-out constraints
Managing the complexity

Just do it externally

e Advantage: fast

e Disadvantage: no interaction with formatting the text

Guiding the placement ‘

e Advantage: interaction with text placement (while
still fairly fast)

¢ Disadvantage: difficult to control

e More research necessary!

Mischief managed!

Hope I was able to reveal something new for you.
Thanks all around!

John Tenniel, 1870

	Introduction
	Dynamic programming
	Algorithms
	Aesthetics only

