
preliminary draft, August 6, 2018 13:00 preliminary draft, August 6, 2018 13:00

TUGboat, Volume 0 (9999), No. 0 preliminary draft, August 6, 2018 13:00 ? 1

What’s to stay, what’s to go —
Compatibility in the LATEX World

Frank Mittelbach

Abstract

In this talk I take a look at the major disruptions
that have rocked the LATEX world in the past decades
and how we handled them, covering some of the re-
sulting consequences.

In the latest part of this saga a rollback con-
cept for the LATEX kernel was introduced (around
2015). Providing this feature allowed us to make
corrections to the software (which more or less didn’t
happen for nearly two decades) while continuing to
maintain backward compatibility to the highest de-
gree.

I will give some explanation on how we have
now extended this concept to the world of packages
and classes which was not covered initially. As the
classes and the extension packages have different re-
quirements compared to the kernel, the approach is
different (and simplified). This should make it easy
for package developers to apply it to their packages
and authors to use when necessary.

What's to stay, what's to go

Compatibility in the LaTeX
World

Frank Mittelbach

Rio, July 2018

Slide #1

What's to stay, what's to go

Compatibility in the LaTeX
World

Frank Mittelbach

Rio, July 2018

Intro (from a LaTeX
perspective)

Major Disruptions in
40 years

Handling disruptions

And now?

So what now?

The new compatibility
approach

Slide #2

Intro (from a LaTeX
perspective)

Gutenberg press (1450+)

Commercial Typewriters (since approx 1870)

TeX (1978/79+)

40 years

The last 4
decades

LaTeX 2.0 (1983)

35 yearsLaTeX 2.09 (1986)

LaTeX2e (1994)

iTeX solves it all (announced 2010, available ???)

Slide #3

Major Disruptions in
40 years

structural needs

birth of TeX
plain TeX (1978)

AmSTeX (around 1981)

user needs

external
influences

Slide #4

preliminary draft, August 6, 2018 13:00 preliminary draft, August 6, 2018 13:00

? 2 preliminary draft, August 6, 2018 13:00 TUGboat, Volume 0 (9999), No. 0

Major Disruptions in
40 years

structural needs LaTeX 2.09 (1986)

birth of TeX

user needs

external
influences

Slide #5

huge step
(8 years)

Major Disruptions in
40 years

structural needs LaTeX 2.09 (1986)

birth of TeX

user needs

7bit -> 8bit TeX 3.0

Flexible font usage

LaTeX2e (1994)
graphics and color needs

internationalization needs

complex mathematics

external
influences

Slide #6

small step
(3 years)

huge step
(8 years)

medium step
(21 years)

Major Disruptions in
40 years

structural needs LaTeX 2.09 (1986)

birth of TeX

user needs

7bit -> 8bit TeX 3.0

Flexible font usage

LaTeX2e (1994)
graphics and color needs

internationalization needs

complex mathematics

external
influences

pdf format pdftex (becomes standard engine)

Unicode
becomes
popular LaTeX2e supported on

all major engines (2015)

engines
appear

Omega,
XeTeX,
LuaTeX

new files are
(normally)
unicode

LaTeX2e assumes utf8
encoding by default (2018)

Slide #7

Major Disruptions in
40 years

Handling disruptions

The early years
LaTeX 2.09

LaTeX 2.09 ->
LaTeX2e

Mature LaTeX2e

Slide #8

The early years
LaTeX 2.09

compatibility approach

stable system managed by a single developer

(and no history to take care of)

goals

provide structure

get it going

starting point

small user base computer affine

small code base
small developer community

fairly consistent interface use

LaTeX 2.09 ->
LaTeX2e

Mature LaTeX2e

Slide #9

extended user
needs

The early years
LaTeX 2.09

extended user
needs

LaTeX 2.09 ->
LaTeX2e

compatibility
approach

distinguish old and new
documents by syntax
change at the very beginning

emulate old syntax and
processing in old documents

disallow (some) old syntax in
remainder of document

Result: mix of old and new syntax
is avoided

develop a large regression test suite
based on LaTeX 2.09 behavior!

largely responsible for the success
of the transition

goals

unification of incompatible versions and approaches

providing missing interfaces

providing needed functionality

starting point large(er) and independent developer community

larger user base

new needs

less time (and interest) by Leslie to manage

bigger and inconsistent code base

extended user
needs

Mature LaTeX2e

Slide #10

preliminary draft, August 6, 2018 13:00 preliminary draft, August 6, 2018 13:00

TUGboat, Volume 0 (9999), No. 0 preliminary draft, August 6, 2018 13:00 ? 3

extended user
needs

more user
needs +
external
influences

The early years
LaTeX 2.09

extended user
needs

more user
needs +
external
influences

LaTeX 2.09 ->
LaTeX2e

extended user
needs

more user
needs +
external
influences

Mature LaTeX2e

initial compatibility
approach (failed eventually)

essentially frozen kernel code

after some period with
corrections and additions

further development then happened
only in packages (5000+ these days)

fixes to the kernel placed in package fixltx2e

packages are assumed to only add functionality (and fixes), i.e.
compatible changes or change name i.e., can be distingusihed

goal(s) correctly process documents even after many years

starting point

new code base with many new features built-in, e.g.,
NFSS, language support, amsmath, graphics, color, etc

many standard extension packages

failed why?
fixltx2e

package development

Slide #11

extended user
needs

more user
needs +
external
influences

The early years
LaTeX 2.09

extended user
needs

more user
needs +
external
influences

LaTeX 2.09 ->
LaTeX2e

extended user
needs

more user
needs +
external
influences

Mature LaTeX2e
failed why?

fixltx2e

moving target: documents using it would change
over time as fixes and additions got added

worse: some classes added fixlt2e making the class
or package a moving target without you knowing it

even worse: if it implemented a change of interface then other packages
had to deal with different APIs depending on whether or not it was loaded

only a fraction of the user base was using it, thus
most never got a correction even for glaring bugs

package development

example: caption -> caption2 -> caption3 -> caption

use of each and everything as hooks into kernel code

incompatible changes without renames

creation of all kind of package interdependencies
(loading order, release level etc)

compatibility broken in many ways

„don’t touch it“ mentality on large packages

Slide #12

got stuck

Handling disruptions

The early years
LaTeX 2.09

LaTeX 2.09 ->
LaTeX2e

Mature LaTeX2e
initial compatibility
approach (failed eventually)

goal(s)

starting point

failed why?
got stuck

failed why?
got stuck

So what now?

got stuck

touch anything anywhere and something will
fail and often in very surprising ways

Slide #13

So what now?

The new compatibility
approach

starting point

kernel code got stale

everybody feared updates as they tend to break
compatibility regardless how important they were

goal(s)bring LaTeX back onto an active development cycle
while providing compatibility for old documents

approach
kernel (2015)

packages + classes (2018)

conclusion

Slide #14

kernel (2015)

introduce latexrelease package

usage in documents

code in the kernel

%<*2ekernel,latexrelease>
%<latexrelease>\IncludeInRelease{<date>}{<label>}{<info>}
...
%<latexrelease>\EndIncludeInRelease
%</2ekernel,latexrelease>

%<latexrelease>\IncludeInRelease{<earlier-date>}{<label>}{<info>}
%<latexrelease> ...
%<latexrelease>\EndIncludeInRelease
%<latexrelease> ...
%<latexrelease> ...
%<latexrelease>\IncludeInRelease{0000-00-00}{<label>}{<info>}
%<latexrelease> ...
%<latexrelease>\EndIncludeInRelease

conclusion: works well, but is not convenient to use
and not really suitable for package or class level

current code goes into the kernel and (surrounded by
\IncludeInRelease and \EndIncludeIn Release).
Older Code only goes there

Slide #15

preliminary draft, August 6, 2018 13:00 preliminary draft, August 6, 2018 13:00

? 4 preliminary draft, August 6, 2018 13:00 TUGboat, Volume 0 (9999), No. 0

packages + classes (2018)

introduce general rollback

usage in documents

\RequirePackage[<date>]{latexrelease}

\usepackage[<option(s)>]{<package>}[<min-date>]

now rolls the kernel code back and additionally
any package or class code

in addition it is possible to request a specific
release on package/class level

up to now <min-date> requested that the
package is at least from that date or younger

we now repurpose that
optional argument:

if it contains a date, e.g., 2018-04-01
then it denotes a <min-date> as before

if it contains =<date> then an attempt
is made to load the package as it was
at this date

the same optional argument exists for
\documentclass and is repurposed as well

code in the package or class

\DeclareRelease{<name>}{<date>}{<external-file>}
\DeclareRelease{<name>}{<later-date>}{<external-file>}
...
\DeclareCurrentRelease{<name>}{<date>}

\ProvidesPackage ...

<name> denotes a named version

<date> denotes the first day this release was current

<name> or <date> but not both can be empty

<external-file> is the file to load for this release

\DeclareCurrentRelease has no file argument as
the code for it is in the current file

<external-file> can be simply the corresponding .sty file from the
release date (preferably with the commentary at the beginning adjusted)

granularity

\IfTargetDateBefore{<date>}
{<before-date-code>}
{<after-or-at-date-code>}

this concept is not intended to track each and every
minor patch but only major changes that would
have noticable effects on document processing

if necessary (or desired) it is possible to
provide finer granularity within a file

Slide #16

The new compatibility
approach

starting point

goal(s)

approach

conclusiononce you finished a paper you can now freeze its processing
(subject to usage of the concept) by simply adding

\RequirePackage[<current-date>]{latexrelease}

at its top with a better chance that it will still work in the future

though for important works like, say, a book I would still
suggest to save the texmf tree along with the sources

We now have a rollback mechanism that
works and kernel, class and package level

This allows future development without
compromising compatibility

Slide #17

And now?

Future development is
necessary for the health and
prosperiority of a system

but it needs to overcome the opposition of
those that do have no immediate need

it is human nature to be against leaving
well-established pathes

Existing user base (even if dwindling)
is vocal in „stay as is / why change?“

Remember that new users may be the silent majority!

Outlook

Slide #18

And now?

Future development is
necessary for the health and
prosperiority of a system

WHO NEEDS THES FONTS WITH ALL
THESE UNNECESSARY CHARACTERS?
(1994)

stay with LaTeX 2.09

Put it into a separate format so that it
doesn’t affect existing LaTeX users

THIS WILL BREAK THE
WORLD (2018)well it didn’t ... okay, we had to get five

patch releases out fairly quickly to fix
some oversights and we missed alerting
one or the other package owner of a need
to adjust --- but on the whole it went fairly
well

email I received after Joseph discussed UTF-8
as a default on his blog

sounds familiar?

Outlook

Slide #19

And now?

Future development is
necessary for the health and
prosperiority of a system

WHO NEEDS THES FONTS WITH ALL
THESE UNNECESSARY CHARACTERS?
(1994)

THIS WILL BREAK THE
WORLD (2018)

Outlook

focus further on consolidation of the 2e world
(break the world --- for the better hopefully)

work on the next big disruption: accessibility pdf

Slide #20

The slides have been retrospectively constructed from
the mindmap used during the presentation.

� Frank Mittelbach
https://www.latex-project.org

