
TUGboat, Volume 39 (2018), No. 2 107

A rollback concept for packages and classes

Frank Mittelbach

Abstract

In 2015 a rollback concept for the LATEX kernel was
introduced. Providing this feature allowed us to
make corrections to the software (which more or
less didn’t happen for nearly two decades) while
continuing to maintain backward compatibility to
the highest degree.

In this paper we explain how we have now ex-
tended this concept to the world of packages and
classes, which was not covered initially. As classes
and extension packages have different requirements
compared to the kernel, the approach is different (and
simplified). This should make it easy for package
developers to apply it to their packages and authors
to use when necessary.

Contents

1 Introduction 107

2 Typical scenarios 108

3 The document interface 108
3.1 Global rollback 108
3.2 Individual rollback 108
3.3 Specifying a version instead of a date 109
3.4 Erroneous input 109
3.5 Advice for early adopters 109

4 The package/class interface 110

5 Special considerations for developers 110
5.1 Early adopters 111
5.2 New major release in beta 111
5.3 Two major releases in use 111
5.4 Fine grained control (if needed) . . . 112
5.5 Using l3build for source management 112

6 Command summary 112
6.1 Document interface, for users 112
6.2 Package and class interface,

for developers 112

1 Introduction

In 2015 we introduced a rollback concept for the
LATEX kernel that enables a user to request a kernel
rollback to its state at a given date by using the
latexrelease package [1]. For example,
\RequirePackage[2016-01-01]{latexrelease}

would result in undoing all kernel modifications (cor-
rections or extensions) released between the first of

January 2016 and the current date.1 Undoing means
reinstalling the definitions current at the requested
date and normally also removing new commands
from TEX’s memory so that \newcommand and simi-
lar declarations do not fall over because a name is
already declared.

This mechanism helps in correctly processing
older documents that contain workarounds for issues
with an older kernel, issues that have since been fixed
in a way that would make the old document fail, or
produce different output, when processed with the
newer, fixed kernel.

If necessary, the latexrelease package also allows
for rolling the kernel forward without installing a
new format. For example, if the current installation
is dated 2016-04-01 but you have a document that
requires a kernel with date 2018-01-01, then this can
be achieved by starting it with
\RequirePackage[2018-01-01]{latexrelease}

provided you have a version of the latexrelease pack-
age that knows about the kernel changes between the
date of your kernel and the requested date. Getting
this version of the package is simple as the latest
version can always be downloaded from CTAN. Thus
you will be able to process your document correctly
even when updating your complete installation is not
advisable or impossible for one or another reason.

However, rolling back the kernel state is only
doing half of the job: the LATEX universe consists of
many add-on packages and those were not affected
by a kernel rollback request. We are therefore now
extending the concept by providing a much simpler
method for use in packages and classes, one that we
think will be straightforward for developers and also
easy for document authors to use.

Unlike the method used by the kernel, which
tracks every change individually and is able to roll
back the code to precisely the state it had on any
given day, the new method for packages and classes is
intended to cover only major change points, e.g., the
introduction of major new features or (incompatible)
changes in syntax or interfaces.

As we will have only a few rollback points per
package or class, the different releases are all stored in
separate files. In the main file it therefore only needs
a single declaration per release to enable rollback.
The downside is, of course, that for each release the
whole package code is stored, instead of managing
the differences between releases. This is one of the

1 There are a few exceptions as some modifications are kept:
for example, the ability to accept date strings in ISO format
(e.g., 2016-01-01) in addition to the older LATEX convention
(e.g., 2016/01/01). These are not rolled back because removing
such a feature would result in unnecessary failures.

A rollback concept for packages and classes

108 TUGboat, Volume 39 (2018), No. 2

reasons why this approach should be used only for
major changes, i.e., at most a handful in the lifetime
of a package.

From a technical perspective it is also possible
to use the method introduced with latexrelease in
package and class files, i.e., to mark up modifica-
tions using the commands \IncludeInRelease and
\EndIncludeInRelease—the package’s documenta-
tion [1] gives some advice on how to apply it in a
package scenario—but the use of these commands
in package code is cumbersome and results in fairly
unreadable code, especially when there are many
minor changes. This is an acceptable price to pay
for fairly stable code, such as the kernel itself, since
it offers complete control over the rollback to any
date, but it is not truly practical in package or class
development and so, to our knowledge, it has there-
fore never been used up to now. Section 5.4 gives
some advice on how to achieve fine-grain control in
a somewhat simpler manner.

2 Typical scenarios

A typical example, for which such a rollback func-
tionality would have provided a major benefit (and
will do so for packages in the future), is the cap-
tion package by Axel Sommerfeldt. This package
started out under the name of caption with a certain
user interface. Over time it became clear that there
were some deficiencies in the user interface; to rectify
these without making older documents fail, Axel in-
troduced caption2. At a later point the syntax of that
package itself was superseded, resulting in caption3
and then, finally, that got renamed back to caption.
So now older documents using caption will fail whilst
documents from the intermediate period will require
caption2 (which is listed as superseded on CTAN but
is still distributed in the major distributions). So
users accustomed to copying their document pream-
ble from one document to the next are probably still
continuing to use it without noticing that they are
in fact using a version with defective and limited
interfaces.

Another example is the fixltx2e package that for
many years contained fixes to the LATEX kernel. In
2015 these were integrated into the kernel so that
today this package is an empty shell, only telling the
user that it is no longer needed. However, if you pro-
cess an old document (from before 2015) that loads
fixltx2e then of course the fixes originally provided
by this package (like the corrections to the floats
algorithm) would get lost as they are now neither in
the kernel nor in the “empty” fixltx2e package if that
doesn’t roll back as well— fortunately it does and
always did, so in reality it isn’t quite an empty shell.

A somewhat different example is the amsmath
package, which for nearly a decade didn’t see any
corrections even though several problems have been
found in it over the years. If such bugs finally get
corrected, then that would affect many of the doc-
uments written since 2000, since their authors may
have manually worked around one or another of the
deficiencies. Of course, as with the caption pack-
age, one could introduce an amsmath2, amsmath3,
. . . package, but that puts the burden on the user
to always select the latest version (instead of auto-
matically using the latest version unless an earlier
one is really needed).

3 The document interface

By default LATEX will automatically use the current
version of any class or package—and prior to offering
the new rollback concept it always did that unless
the package or class had its own scheme for providing
versioning, either using alternative names or by hand-
coded options to select a version.

3.1 Global rollback

With the new rollback concept all the user has to do
(if he or she wants their document processed with
a specific version of the kernel and packages) is to
add the latexrelease package at the beginning of the
document and specify a desired date as the package
option, e.g., just as in the first example:
\RequirePackage[2018-01-01]{latexrelease}

This will roll back the kernel to its state on that day
(as described earlier) and for each package and the
document class it will check if there are alternate
releases available and select the most appropriate
release of that package or class in relation to the
given date.

3.2 Individual rollback

There is further fine-grain adjustment possible: both
\documentclass as well as \usepackage have a sec-
ond (little known) optional argument that up to now
was used to allow the specification of a “minimal
date”. For example, by declaring
\usepackage[colaction]

{multicol}[2018-01-01]
you specify that multicol is expected to be no older
than the beginning of 2018. If only an older version
is found, then processing such a document results in
a warning message:
LaTeX Warning: You have requested, on input

line 12, version ‘2018-01-01’ of package
multicol, but only version
‘2017/04/11 v1.8q multicolumn formatting
(FMi)’ is available.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 2 109

The idea behind this approach is that packages sel-
dom change syntax in an incompatible way, but more
often add new features: with such a declaration you
can indicate that you need a version that provides
certain new features.

The new rollback concept now extends the use
of this optional argument by letting you additionally
supply a target date for the rollback. This is done
by prefixing a date string with an equal sign. For
example,
\usepackage{multicol}[=2017-06-01]

would request a release of multicol that corresponds
to its version in June 2017.

So assuming that at some point in the future
there is a major rewrite of this package that changes
the way columns are balanced, the above would re-
quest a fallback to what right now is the current
version from 2017-04-11. The old use of this op-
tional argument is still available because presence
or absence of the = determines how the date will be
interpreted.

The same mechanism is available for document
classes via the \documentclass declaration, and for
\RequirePackage if that is ever needed.

3.3 Specifying a version instead of a date

Specifying a rollback date is most appropriate if you
want to ensure that the behavior of the processing
engine (i.e., the kernel and all packages) corresponds
to that specific date. In fact, once you are finished
with editing a document, you can preserve it for
posterity by adding this line:
\RequirePackage[〈today’s-date〉]

{latexrelease}

This would mean that it will be processed a little
more slowly (since the kernel may get rolled back
and each package gets checked for alternate versions),
but it would have the advantage that processing it
a long time in the future will probably still work
without the need to add that line later.

However, in a case such as the caption package
or, say, the longtable package, that might eventually
see a major new release after several years, it would
be nice to allow the specification of a “named” release
instead of a date: for example, a user might want
to explicitly use version 4 rather than 5 of longtable
when these versions have incompatible syntax, or
produce different results.

This is also now possible if the developer declares
“named” releases for a package or class: one can then
request a named version simply by using this second
optional argument with the “name” prefixed by an
equal sign. For example, if there is a new version of

longtable and the old (now current) version is labeled
“v4”, then all that is necessary to select that old
version is
\usepackage{longtable}[=v4]

Note that there is no need to know that the new
version is dated 2018-04-01 (nor to request a date
before that) to get the old version back.

The version “name” is an arbitrary string at
the discretion of the package author—but note that
it must not resemble a date specification, i.e., it
must not contain hyphens or slashes, since these will
confuse the parsing routine.2

3.4 Erroneous input

The user interface is fairly simple and to keep the
processing speed high the syntax checking is therefore
rather light. Basically the standard date parsing from
the kernel is used, which is rather unforgiving if it
finds unexpected data.

Basically any string containing a hyphen or a
slash will trigger the date parsing which then expects
two hyphens (for the case of an ISO date) or two
slashes (otherwise) and other than these separators,
only digits. If it does find anything else, chances are
that you will get a “Missing \begin{document}”
error or, perhaps even more puzzling, a strange selec-
tion being made. For example, 2011/02 may mean
to us February 2011 but for the parsing routine it is
some day in the year 20 a.d. That is, it gets converted
to the single number 201102, so that, when this num-
ber is compared numerically to, say, 20000101, it
will be the smaller number, i.e., earlier, even though
the latter is the numerical representation of Jan-
uary 1st 2000.

So, bottom line: do not misspell your dates and
all is fine. That hasn’t been a problem in the past,
so hopefully it will be okay to continue with just this
light checking. If not, then we may have to extend
the checks made during parsing.

3.5 Advice for early adopters

If your document makes use of the new global roll-
back features, then it should be processable at any
installation later than early 2015, when the latex-
release package was first introduced. If the instal-
lation is even older, then it needs upgrading or, at
least, one has to add a current latexrelease package
to the installation.

However, if your document uses the new concept
for individual rollbacks of packages or classes (i.e.,

2 Of course more sophisticated parsing could fix this, but
we use fast and simple parsing that scans for slashes or hyphens
with no further analysis.

A rollback concept for packages and classes

110 TUGboat, Volume 39 (2018), No. 2

with the =... syntax in the optional argument), then
it is essential to use a LATEX distribution from 2018 or
later.3 Earlier distributions will choke on the equal
sign inside the argument as they will only expect to
see a date specification there.

4 The package/class interface

The rollback mechanism for packages or classes is
provided by putting, at the beginning of the file con-
taining the code, a declaration section that informs
the kernel about existing alternative releases.

These declarations have to come first and have
to be ordered by date because the loading mechanism
will evaluate them one by one and, once a suitable
release is found, it will be loaded and then processing
of the main package or class file will end. If there are
no such declarations, or if the older releases are all
ruled out for one reason or another, processing will
continue as normal by reading all of the main file.

The old releases are stored in separate files, one
for each release, and we suggest using a scheme such
as 〈package-name〉-〈date〉.sty as this is easy to un-
derstand and will sort nicely within a directory. How-
ever, any other scheme will do as well, as the name
is part of the declaration.

The contents of this release file is simply the
package or class file as used in the past. This means
that before making a new version all you need to do
is to make a verbatim copy of the current file and
give it a new suitable name.4

This way it is also straightforward to include
older releases after the fact, e.g., to take our famous
caption example, Axel could provide the very first
version of his package as caption-〈some-date〉.sty
and caption2 as caption-〈another-date〉.sty in ad-
dition to adding the necessary declarations to the
current release.

The necessary declarations in the main file are
provided by the two commands, \DeclareRelease,
and \DeclareCurrentRelease, that must be used in
a release selection section at the beginning of the file.
For each old release you can specify a 〈name〉, the
〈date〉 when it was first available and the 〈external-
file〉 that contains the code.

3 Alternatively you could try to roll the installation for-
ward, by using a current latexrelease package together with a
suitable date option.

4 Instead of making a verbatim copy you may want to
adjust the commentary added by docstrip at the top of the
file. Though technically correct, it is a bit misleading if the file
still contains the phrase “was generated from . . . ”, given that it
is now a frozen version representing a particular state in time,
rather than being a generated one that can be regenerated
any time as necessary.

\DeclareRelease
{〈name〉}{〈date〉}{〈external-file〉}

Either the 〈name〉 or the 〈date〉 can be empty, but
not both at the same time. Not specifying a 〈date〉
is mainly intended for providing “beta” versions that
people can explicitly select but that should play no
role in date rollbacks.

The current release also gets a declaration, but
this time with only two arguments: a 〈name〉 (again
possibly empty) and a 〈date〉 since the code for this
release will be the rest of the current file:

\DeclareCurrentRelease{〈name〉}{〈date〉}
This declaration has to be the last one in sequence
as it will end the release selection processing.

The order of the other releases has to be from
the oldest to the newest since the loading mechanism
compares every release declaration with the target
rollback date and stops the moment it finds one that
is newer than this target date. It will then select the
one before, i.e., the last one that is at least as old as
the target. Since the \DeclareRelease declarations
with an empty 〈date〉 argument do not play a role in
date rollbacks, they can be placed anywhere within
the sequence.

As a typical example of a release section the
start of the multicol package currently looks as fol-
lows because there was a major internal rewrite in
April 2018. Note that because of some minor fixes
afterwards the actual package date is already June.

\NeedsTeXFormat{LaTeX2e}[2018-04-01]
\DeclareRelease{}{2017-04-11}

{multicol-2017-04-11.sty}
\DeclareCurrentRelease{}{2018-04-01}
\ProvidesPackage{multicol}[2018/06/26 v1.8t

multicolumn formatting (FMi)]

If the rollback target is not a date but a name,
the mechanism works in the same way with the ex-
ception that a release is selected only if the name
matches. If none of the names is a match, then the
mechanism will raise an error and continue by using
the current release.

5 Special considerations for developers

While loading an older release of a package or class,
both types of release declarations are made no-ops,
so that, in case the files containing the code also
have such declarations, they will not be looked at or
acted upon. This makes it possible to simply move
the code from an old release into a new file without
the need to touch it at all. Of course, removing those
declarations doesn’t hurt and will make loading a
tiny fraction faster.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 2 111

As mentioned earlier, best practice for release
names is to append the release date to the package
or class name, but the 〈external file〉 argument also
allows other naming schemes.

You may have wondered why you have to make
a declaration for the current release, given that later
on there will be a \Provides... declaration that
also contains a date and a version string and thus
could signal the end of the release declaration section.
The reason is as follows: if you want to give your
current release a name, then it is best practice to
make that name something simple like v4 (and keep
it that way) even though your current package is
technically already at v4.2c and is listed that way
in the \ProvidesPackage declaration. For the same
reason (given that not every minor change will be
provided as a separate version to which people can
roll back), the 〈date〉 in \DeclareCurrentRelease
reflects when that major release was first introduced.
Thus, after a while that date may well be earlier
than the current package date.

5.1 Early adopters

For one or two years after the introduction of this
new method, there is a danger that people with older
installations will pick up an individual package from,
say, CTAN that contains release declarations with
which their kernel (from 2017 or earlier) is unable to
cope. It may therefore be a good idea for developers
to additionally add the following lines at the top
of packages or classes when using the new rollback
feature:
\providecommand\DeclareRelease[3]{}
\providecommand\DeclareCurrentRelease[2]{}

This way the declarations will be bypassed in case
the kernel doesn’t know how to deal with them.

As an alternative one could add a statement
that requires a minimal kernel version, i.e.:
\NeedsTeXFormat{LaTeX2e}[2018-04-01]

so that users get a clear error message that they need
to update their installation if they want to use the
current file.

5.2 New major release in beta

If you are working on a new major release of your
package or class, you may want to get it out into the
open so that people can try it and provide feedback.
In that case the current release is still the official
release which should be selected by default, and the
“beta” version should only be selected if explicitly
requested. To achieve that you could add
\DeclareRelease{beta}{}{〈external-file〉}
before
\DeclareCurrentRelease{}{〈some-date〉}

so that testers can explicitly access your new version
by asking for it via
\usepackage[〈options〉]{〈package〉}[=beta]
while everyone loading the package without the extra
optional argument would get the current release.

5.3 Two major releases in use

One special scenario for which this method is only
partially suitable is the case where we have two
major releases that are in continuing parallel use
and that are both under active maintenance (i.e.,
receive bug fixes and other updates once in a while).
In that case it is necessary to make one version the
primary release and allow the other (and its updates)
to be accessed only via names: a date rollback can
obviously work for only one line of development.

For example, if both v4 and v5 of package foo are
in use and you consider v5 as being the go-forward
version (even though you are still fixing bugs in the
v4 code), then you can deploy a strategy as in the
following example:
% last v4 only release:
\DeclareRelease{}{2017-06-23}

{foo-2017-06-23.sty}
% first v5 release:
\DeclareRelease{}{2017-08-01}

{foo-2017-08-01.sty}
% patch to v4 after v5 got introduced:
\DeclareRelease{v4.1}{}

{foo-v4-2017-09-20.sty}
% patch to v5:
\DeclareRelease{}{2017-08-25}

{foo-2017-08-25.sty}
% another patch to v4:
\DeclareRelease{v4.2}{}

{foo-v4-2017-10-01.sty}
% nickname for the latest v4 if you want
% users to have simple access via a name:
\DeclareRelease{v4}{}

{foo-v4-2017-10-01.sty}
% current v5 with further patches:
\DeclareCurrentRelease{v5}{2018-01-01}

This way users can use \usepackage{foo}[=v4] to
get the latest v4 release or use the more detailed
release names such as [v4.1]. This means that if
package foo is requested at version v4 (or one of its
sub-releases), it will not change even if there is a
general rollback request via latexrelease.

Normally, this should be just fine, but if you
really require automatic date rollback functionality
on both major versions, because the two are really
equal in rank, then you are essentially saying they
are independent works with some common root. In
that case you should give them two separate names,

A rollback concept for packages and classes

112 TUGboat, Volume 39 (2018), No. 2

e.g., call the older version foo-v4 when you introduce
version 5 of foo and from that point on manage the
history independently.5

5.4 Fine grained control (if needed)

As mentioned earlier, the interface is deliberately
designed to be simple and easy to use. As a price,
each rollback point is (by default) a separate file. The
idea behind this is that there is not much point in
managing each and every small change as a rollback
point, but only those that possibly alter the behavior
of a package within the document so that, when
processing older documents, it is important to be
able to get back to an earlier state.

However, if you find yourself in a situation where
you have many rollback files with only minor differ-
ences, and you consider this unsatisfactory, then here
is one other command at your disposal that you can
use to combine several files into a single file. Within a
file corresponding to a \DeclareRelease declaration
you can use

\IfTargetDateBefore{〈date〉}
{〈before-date-code〉}{〈after-or-at-date-code〉}

This must be used after the release selection section
(if present) and has the following effect: If the user
requested, say, [=2017-06-01] then the mechanism
first selects the file that is supposed to be current on
that date, i.e., the release that was introduced on that
date or is the last one that was introduced before that
date. Now, if in this file we have a statement like the
above, then the 〈date〉 is compared to 2017-06-01
and depending on the outcome either 〈before-date-
code〉 or 〈after-or-at-date-code〉 is executed.

This way a single external file can hold rollback
information for several patches on distinct dates, but
of course, the burden is then on the developer to add
the appropriate declarations, which is a little more
work than just copying and renaming files.

The alternative is to use \IncludeInRelease
and \EndIncludeInRelease. The latexrelease pack-
age documentation [1] gives some advice on how to
apply those commands.

5.5 Using l3build for source management

If you use l3build [2] for managing your sources,
then it is necessary to ensure that the files for the old
releases are copied into the distribution. To support
this, the default configuration for l3build specifies

5 While in rare cases this might be the best approach, try
to avoid it as long term management will be problematic, to
say the least.

sourcefiles = {"*.dtx", ".ins",
"*-????-??-??.sty"}

i.e., all .dtx and .ins files, together with all .sty
files matching the naming convention suggested in
this article, are automatically included in the build.

If you prefer a different naming convention you
have to adjust this setting in the build.lua file of
your project. Otherwise you are ready to go without
any adjustments.

6 Command summary

6.1 Document interface, for users

For a global rollback of kernel and packages, use
\RequirePackage[〈target-date〉]{latexrelease}
at the beginning of your document.

To request a rollback for a single package or
class, use the second optional argument with the
date preceded by an equal sign, i.e.,
\documentclass[〈options〉]{〈class〉}[=〈date〉]
\usepackage [〈options〉]{〈package〉}[=〈date〉]

6.2 Package and class interface,
for developers

To declare an old or special release, use
\DeclareRelease

{〈name〉}{〈date〉}{〈external-file〉}
Leave the 〈name〉 argument empty if rollback should
be only via dates. Leave the 〈date〉 empty if this
special release should be accessible only via its name.

Always finish this release selection section with
a declaration for the current release:
\DeclareCurrentRelease{〈name〉}{〈date〉}
In this declaration you must provide a 〈date〉 but the
〈name〉 can be left empty (which is the usual case).

Within a release file (but after the release selec-
tion section), you can specify conditional code to be
selected based on a requested rollback date by using:
\IfTargetDateBefore{〈date〉}

{〈before-date-code〉}{〈after-or-at-date-code〉}

References

[1] The LATEX Team. The latexrelease package,
April 2015. Available at https://www.
latex-project.org/help/documentation.

[2] The LATEX Team. The l3build package—
Checking and building packages, March 2018.
The manual l3build.pdf should be part
of your installation. Run “texdoc l3build”
to find it. See also https://ctan.org/pkg/
l3build.

� Frank Mittelbach
https://www.latex-project.org

Frank Mittelbach

