
TUGboat, Volume 39 (2018), No. 2 119

siunitx: Past, present and future

Joseph Wright

Abstract

The siunitx package provides a powerful toolkit for
typesetting numbers and units in LATEX. By incor-
porating detail about the agreed rules for presenting
scientific data, siunitx enables authors to concentrate
on the meaning of their input and leave the package
to deal with the formatting. Here, I look at the
background to the package, what led me from ver-
sion 1 to version 2, and why version 3 is now under
development.

1 Introduction

Typesetting units naturally lends itself, in TEX, to
using macro support. The formal rules for SI units [1]
link unit names with unit symbols, and it’s not sur-
prising that several authors have created packages
that tackle some or all of the subtleties involved. I’ve
detailed some of these issues and packages before,
when I last looked at siunitx for TUGboat [6]. Here,
I’ll briefly recap some of those key points, then ex-
plore what is driving efforts toward a third version
of the package.

2 Early days

Before siunitx, there were a variety of units-related
packages, including one called SIunits [3], which deals
with providing semantic macros for units. My in-
volvement started when I followed up an apparently-
innocuous post to comp.text.tex from Stefan Pin-
now in November 2007, reporting a straightforward
bug

I want to report that \reciprocal,

\rpsquare, \rpcubic, etc. output is

written as "-1" instead of a -1, when

the package option "textstyle" is used.

I tried to contact Mr. Heldoorn, but he

didn’t answer until now. Does anyone

have an idea what to do?

Being young(ish) and foolish, after looking at
the bug itself and finding that SIunits was no longer
maintained, I volunteered to pick up the package.
Even more foolishly, I then followed up with the
following in November 2007:

As some of you may have noticed,

following a recent bug report

concerning the SIunits package,

I have taken over as the package

maintainer. I have uploaded a bug fix

for the specific issue to CTAN, and so

hopefully it will appear within a day

or two.

It has been suggested by the

maintainer of the SIstyle package

that integration of the two be would

worth considering. Other suggestions

have also been made in the newsgroup

and by private mail. I am therefore

planning to review the existing

situation and see what improvements

are needed/desirable. As well as

SIunits and SIstyle, I am going to

look at numprint, units, unitsdef and

hepunits for inspiration/points to

consider/etc.

So far, I have some outline ideas,

for example: ...

I soon had quite a list, and work on the new
package began in earnest, and by February 2008 the
first testing release was out. After a little more work,
and a rename, the first official version of siunitx hit
CTAN on the 16th of April 2008 [7].

3 Key features

The core features of siunitx have been present from
that first version, and are pretty well-known. I’d
summarise them as

• Automatic, semantic formatting of quantities
(numbers with units)

• Parsing and manipulation of numbers

• Control of printing of numbers, units and
quantities

• Alignment of numbers in tables

• Unified key–value interface for controlling
options

For me, the package has always been about units,
and the fundamental idea that input such as

\joule\per\mole\per\kelvin

can give J mol−1 K−1 or J
molK or J/(mol K), depend-

ing on the settings in force. This idea has been there
since day one, and the code has carried through
more-or-less unchanged.

4 From version one to version two

Version one of siunitx worked well for delivering on
those key features. Releases progressed rapidly, cul-
minating in version 1.4c in February 2010. However,
adding new features was a problem: internally it was
a bit of a mess. For example, if you look at the old
code you’ll see:

• Internals other than unit parsing taken from
existing packages and somewhat haphazard

siunitx: Past, present and future

120 TUGboat, Volume 39 (2018), No. 2

• Sub-optimal key–value choices

• Essentially no internal API

• Poor self-coded loops

• . . .

Around this time, Will Robertson contacted
me to ask what I thought of the LATEX3 language
expl3 [4]. This was before I joined the LATEX team,
and expl3 looked a bit different than today, but the
central ideas were all there. I liked the ideas, but at
the time was a bit wary of loading an external library
(and thus a dependency). So I started by picking
out the ideas and re-coding them in my development
setup for version two. It soon became clear that I
needed a lot of the ideas, and I realised that I’d be
much better off just requiring expl3.

Work on the second version of siunitx took me
into expl3 programming, and asking the team for lots
of features. In particular, I wanted to have key–value
support built-in, rather than needing to use another
package to do that. So I wrote some code, which
I called keys3, to solve the problem. It turned out
that was my application to join the team: it’s today
l3keys in expl3 itself!

The rewrite gave me a chance to significantly
revise internal API aspects, and to significantly im-
prove performance. It also came of course with new
features for users, and completely new names for
the key–value interface. In the v2.0 release, I didn’t
include backward-compatibility: I soon learned, and
that’s been there since a few days after the second
generation release.

5 From version two to version three

Version two retains most of the features that version
one had, but as well as the good ones, it turns out it
keeps some of the bad ones too! In particular

• Assumptions about fonts: OpenType, etc.

• No code-level API expl3

• Internals still too messy

• Testing the PDF documentation only

• Monolithic source

• Still too slow

5.1 Font control

The font assumptions carry all the way through from
SIstyle [2], and which I adjusted only slightly. The
approach currently used is

1. Detect current font type using LATEX internal
data

2. Insert everything inside \text

3. Apply \ensuremath inside the box

4. Perhaps apply \text again (for text mode
output)

5. Force the font with e.g. \mathrm or \rmfamily

That requires a lot of work, and more import-
antly is unreliable: it’s not always easy to get the
right font ‘inside’ the output section. It also fails
very badly with OpenType math mode fonts, where
the ideas in classical TEX about math families simply
don’t apply. So there is a new approach: for version
three

1. Detect current font type using LATEX internal
data

2. Set any aspects that are needed

3. Only use an \mbox if math version has to be
altered

This ‘minimal change’ approach is much faster
than the current one, and is much better at respecting
font changes. I’m still finalising compatibility for
current edge-case setups, but I believe the new code
is much preferable overall.

5.2 The code API and testing

The development of siunitx version two very much
parallels that of expl3 as a truly usable language: in
the time I’ve been using it, expl3 has gone from a set
of clever experiments to a well-established approach
to coding in TEX. But keeping all of siunitx up-to-
date with ideas has been tricky.

The biggest issue is that when I wrote the cur-
rent release code, there were just user commands
such as \num and internal implementation. However,
it’s now clear that each user command should have
a documented code-level interface. Moreover, these
interfaces should all be properly tested: the team
have created l3build precisely for that [5]. Combining
these ideas, the new code will take the input

\siunitx_unit_format:nN

{ \joule \per \mole }

\l_tmpa_tl

\tl_show:N \l_tmpa_tl

and create as output

> \l_tmpa_tl=

\mathrm {J}\,\mathrm {mol}^{-1}

Notice that this is easy to test, and highlights another
new idea: the parsing step should produce the same
results as a user typing in the formatting ‘by hand’.

5.3 First alpha release

At the time of writing, the development of version
three has reached the first alpha stage: the code is
usable but there are real gaps. Currently, all of the
following are working:

Joseph Wright

TUGboat, Volume 39 (2018), No. 2 121

• Core functionality:

– Unit parsing and formatting

– Real number formatting

– Tabular columns

• Existing API: \num, \SI, \si, S-column

• New (experimental) document API: \unit, \qty

There are some big areas left to do, such as
multi-part numbers, ranges, lists and most import-
antly the compatibility layer for dealing with existing
documents. However, that is all relatively manage-
able, and I expect to be done around the end of the
year. So 2019 should see siunitx reach version 3.0.0,
and I hope retain its place as the units package for
LATEX.

References

[1] Bureau International des Poids et Mesures.
The international system of units (SI), 2010.
bipm.org/en/measurement-units/

[2] D. Els. The SIstyle package, 2008.
ctan.org/pkg/sistyle

[3] M. Heldoorn and J. Wright. The SIunits
package: Consistent application of SI units,
2007. ctan.org/pkg/siunits

[4] LATEX Project. The expl3 package and LATEX3
programming, 2018. ctan.org/pkg/expl3

[5] LATEX Project. l3build: Checking and building
packages, 2018. ctan.org/pkg/l3build

[6] J. Wright. siunitx: A comprehensive (SI) units
package. TUGboat 32(1):95–98, 2011. tug.org/
TUGboat/tb32-1/tb100wright-siunitx.pdf

[7] J. Wright. siunitx— a comprehensive (SI) units
package, 2018. ctan.org/pkg/siunitx

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Appendix: demos

Simple number formatting:

123
1234
12 345
0.123
0.1234
0.123 45
3.45 × 10−4

−1010

\num{123} \\

\num{1234} \\

\num{12345} \\

\num{0.123} \\

\num{0,1234} \\

\num{.12345} \\

\num{3.45d-4} \\

\num{-e10}

Angles:

10◦

12.3◦

4.5◦

1◦2′3′′

1′′

10◦

−0◦1′

\ang{10} \\

\ang{12.3} \\

\ang{4,5} \\

\ang{1;2;3} \\

\ang{;;1} \\

\ang{+10;;} \\

\ang{-0;1;}

Units as macros:
kg m s−2

g cm−3

V2 lm3 F−1

m2 Gy−1 lx3

H s
\si{\kilo\gram\metre\per\square\second} \\

\si{\gram\per\cubic\centi\metre} \\

\si{\square\volt\cubic\lumen\per\farad} \\

\si{\metre\squared\per\gray\cubic\lux} \\

\si{\henry\second}

Quantities:

1.23 J mol−1 K−1

0.23 × 107 cd
1.99/kg

1.345 C
mol

\SI[mode = text]{1.23}{J.mol^{-1}.K^{-1}} \\

\SI{.23e7}{\candela} \\

\SI[per-mode = symbol]

{1.99}{\per\kilogram} \\

\SI[per-mode = fraction]

{1,345}{\coulomb\per\mole}

siunitx: Past, present and future

