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Abstract
Pagination problems deal with questions around trans-
forming a source text stream into a formatted document by
dividing it up into individual columns and pages, includ-
ing adding auxiliary elements that have some relationship
to the source stream data but may allow a certain amount
of variation in placement (such as figures or footnotes).

Traditionally, the pagination problem has been ap-
proached by separating it into one of micro-typography (eg,
breaking text into paragraphs, also known as h&j) and one
of macro-typography (eg, taking a galley of already format-
ted paragraphs and breaking them into columns and pages)
without much interaction between the two.

While early solutions for both problem areas used sim-
ple greedy algorithms, Knuth and Plass introduced in
1981 a global-fit algorithm for line breaking that optimizes
the breaks across the whole paragraph. This algorithm
was implemented in (see Computers & Typesetting,
Volume B: TeX: The Program by Knuth in 1986) and has
since kept its crown as the best available solution for this
space. However, for macro-typography there has been no
(successful) attempt to provide a globally optimized page
layout: All systems to date (including ) use greedy algo-
rithms for pagination. Various problems in this area have
been researched, and the literature documents some proto-
type development. However, none of them have been made
widely available to the research community or ever made it
into a generally usable and publicly available system.

This paper is an extended version of the author's work
in 2016 originally presented at the 16th ACM Symposium
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on Document Engineering in Vienna, Austria. It presents
a framework for a global-fit algorithm for page breaking
based on the ideas of Knuth/Plass. It is implemented in
such a way that it is directly usable without additional exe-
cutables with any modern installation. It therefore can
serve as a test bed for future experiments and extensions in
this space. At the same time, a cleaned-up version of the
current prototype has the potential to become a production
tool for the huge number of users worldwide.

This paper also discusses 2 already implemented exten-
sions that increase the flexibility of the pagination pro-
cess (a necessary prerequisite for successful global opti-
mization): the ability to automatically consider existing
flexibility in paragraph length (by considering paragraph
variations with different numbers of lines) and the con-
cept of running the columns on a double spread a line
long or short. It concludes with a discussion of the overall
approach, its inherent limitations and directions for future
research.
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pagination, typesetting

1 INTRODUCTION

Pagination is the act of transforming a source document into a sequence of columns and pages,
possibly including auxiliary elements such as floats (eg, figures and tables).

As textual material is typically read in sequential order, its arrangement into columns and
pages needs to preserve the sequential property. There are applications where this is not the case
or not fully the case, eg, in newspaper layout, where stories may be interrupted and “continued
on page X,” but in this paper (which is an extended version of the author's work in 2016 originally
presented at the 16th ACM Symposium on Document Engineering in Vienna, Austria1), we limit
ourselves to formatting tasks with a single textual output stream (see the work of Hailpern et al2

for a discussion of problems related to interrupted texts).
An algorithm that undertakes the task of automatic pagination therefore has to transform the

textual material into individual blocks that form the material for each column and arrange for
distributing auxiliary material across all pages (thereby reducing available column heights) in a
way that it best fulfills a number of (usually) conflicting goals.

This transformation is typically done as a 2-step process by first breaking the text into lines
forming paragraphs and this way assembling a galley (known as hyphenation and justification or
h&j for short) and then as a second step by splitting this galley into individual columns to form
the pages.
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However, separating line breaking and page breaking means that one loses possible bene-
fits from having both steps influence each other. Thus, it is not surprising that this has been an
area of research throughout the years, eg, other works.3-7 The algorithm outlined in this paper
implements some limited interaction to add flexibility to the page-breaking phase.

The remainder of this paper is structured as follows. We first discuss general questions related
to pagination and give a short overview about attempts to automate that process and the possi-
ble limitation when using a global optimization strategy for pagination. Section 2 then describes
our framework for implementing globally optimizing pagination algorithms using a
environment. In Section 3, we have a general look at approaching the problem using dynamic
programming and discuss various useful customizable constraints that can be used to influence
this optimization problem. Section 4 then discusses details of the algorithms we used and gives
some computational examples. This paper concludes with an evaluation of the algorithm quality
and an outline of possible further research work.

Although attempts are made to introduce all necessary concepts, this paper assumes a certain
level of familiarity with if necessary refer to the work of Knuth8 for an introduction.

1.1 Pagination rules
Rules for pagination and their relative weight in influencing the final result vary from application
to application, as they are often (at least to some extent) of an aesthetic nature, but also because,
depending on the given job, some primary goals may outweigh any other. It is therefore important
that any algorithm for this space is configurable to support different rule sets and able to adjust
the weight of each rule in contributing to the final solution.

The primary goal of nearly every document is to convey information to its audience, and thus,
an undisputed “meta” goal for document formatting is to enhance the information flow or at
least avoid hindering or preventing successful communication of information to the recipient. An
example of a rule derived from this maxim is the already mentioned requirement of keeping the
text flow in clearly understandable reading order.

Other examples are rules regarding float placement: To avoid requiring the reader to unnec-
essarily flip pages, floating objects should preferably be placed close to (and visible from) their
main callout, and if that is not possible, they should be placed nearby on later pages (so that a
reader has a clear idea where to search for them). For the same reason, they should be kept in the
order of their main callouts, although that, for example, is a rule that is sometimes broken when
placement rules are mainly guided by aesthetic consideration.

Other rules are more aesthetic in nature, although they too originate from the attempt to pro-
vide easy access to information, as violating them will disrupt the reading flow to some extent:
have a heading always followed by a minimal number of lines of normal text, avoid widows and
orphans (end or beginning line of a paragraph on its own at a column break), or do not break
at a hyphenated line. An example from mathematical typesetting is to shun setting displayed
equations at the top of a column, the reason being that the text before such a formula is usually
an introduction to it; thus, to aid comprehension they should be kept together if possible.

Rules like the above have in common that they all reduce the number of allowed places where
a column break could be taken, ie, they all generate unbreakable larger vertical blocks in the
galley. Thus, finding suitable places to cut up the galley into columns of predefined sizes becomes
harder, and greedy algorithms nearly always run into stumbling blocks (no pun intended), where
the only path they can take is to move the offending block to the next column, thereby leaving a
possibly large amount of white space on the previous one.
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The second major “meta” goal, especially in publishing, is to make best use of the available
space to keep the costs low. If we look only at formatting a single text stream (no floats), then it
is easy to see that this goal stands in direct competition with any rule derived from the first meta
goal. It is easy to prove that a greedy algorithm will always produce the shortest formatting* if
the column sizes are fixed and all document elements are of fixed size and need to be laid out in
sequential order (a proof is given in Lemma 1 on page 42). Thus, to satisfy both goals, one needs
to allow for either

• variations in column heights,
• variations in the height of textual elements, or
• allow nonsequential ordering of elements.

In this paper, we look, in particular, at the first 2 options. The last bullet is usually not an option for
text elements, except in the case of documents with short unrelated stories that can be reordered
or texts that are allowed to be split and “continued.” As these form their own class of documents
with their own intrinsic formatting requirements, they are not addressed in this paper (see, for
example, other works9-12). There is, however, also the possibility to introduce a certain amount
of additional flexibility through clever placement of floats (such as figures or tables) as this will
change the height of individual columns. We do not address the question of optimization through
float placement as part of this paper but assume that floats are either absent or their placement
predetermined or externally determined. The class of documents for which this can be assumed
is rather large; thus, the findings in this paper are relevant even with this restriction in force.
Mittelbach13 discussed the effects of adding float streams to the optimization process and the
resulting changes in complexity.

A variation in column height (typically by allowing the height to deviate by 1 line of text)
is a standard trick in craft typography to work around difficult pagination situations. To hide
such a change from the eyes of the reader, or at least lessen the impact, all columns of a page
and, in 2-sided printing, a double spread (facing pages in the output document) needs the same
treatment.† It is also best to only gradually change the column heights to avoid big differences
between one double spread and the next.

The second option involves interaction between the micro- (line breaking of paragraphs, for-
matting of inline figures, etc) and macro-typography phase (pagination of the galley material),
either by dynamically requesting micro-typography variants during pagination or by precompil-
ing them for additional flexibility in the macro-typography phase. Examples are line breaking
with suboptimal spacing (variant looseness setting in algorithm, eg, the works of Hassan
and Hunter7 and Knuth8) or font compression/expansion (hz-algorithm as implemented by
Thánh14) within defined limits. Other examples are figures or tables that can be formatted to
different sizes.

1.2 Typical problems during pagination
Problems with pagination are commonplace if a greedy algorithm is used. As a typical example,
Figure 1 on page 6 shows the first 6 double spreads from “Alice in Wonderland” as it would be

*The formatting is “shortest” in the sense that compared to any other pagination, it will have a lower or equal number of
columns/pages, and if equal, the last column will contain a lesser or equal amount of material.
†In addition, the paper for printing should be thick enough so that the text block on the back is not shining through, as
that would be a dead giveaway.
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typeset by the (greedy) algorithm of when orphans and widows are disallowed. Most of the
resulting defects can easily be spotted even in the thumbnail presentation. The most glaring one
is on page 7 within Figure 1, which ends up being largely empty.

In contrast, the algorithm presented in this paper is able to overcome all of these problems,
producing the results shown in Figure 2 on page 7. It achieves this by manipulating the paragraphs
shown in gray in both figures and by running some of the page spreads short or long.

The example may seem to be spectacular, but the reality is that these kinds of defects show up
with nearly every document the moment it contains even only a small number of text blocks that
cannot be broken across columns, eg, displayed formulas, headings that need to be followed by a
few lines of text, disallowed widows and orphans, etc, all of which are common cases in books or
journal articles.

1.3 Global optimization
When we speak of “globally optimized pagination,” we mean that out of all possible pagina-
tions for a given document, the “best” by some measure is selected. To determine this optimal
pagination, we define a function that, when given a pagination as input, will return a single
numerical value. By convention, a lower value indicates a better result; hence, common names
for such functions in the literature are “cost function” or “objective function” as one can view
this as returning the costs associated with its input. Finding the optimal solution therefore means
finding the pagination that results in the lowest return value of this function.

Taking a step back from that rather abstract definition of a quality measure, what does it mean
in reality and how can it be applied? Obviously, if we can measure a specific aspect of a pagination,
we can attach a value to it, and this can be done in a such way that lower values correspond to
better results for this particular aspect.

For example, if we are interested in a low number of pages, we could return #pages or
(#pages)2. On the other hand, if we want to measure the quality of the white space distribution
for a given pagination, we could analyze the quality of each column (obtaining a number greater
than zero, if there is excess white space) and then sum these up over all columns, or sum up the
squares of these values or use the maximum over all columns or…

All these examples are valid measures in the sense that they encode the quality of a certain
aspect in a monotone function, but clearly, they are quite different and focus on different sub-
aspects. For example, if we take the sum, then this means that a single very bad column among a
lot of perfect ones is considered to be better than a few near-perfect columns, whereas summing
the squares will give a better result if all values are closer to each other. Thus, even for a single
quality aspect, it can turn out to be a difficult problem to define a cost function that is a reasonable
approximation to the quality perception of a human looking at the paginations.

However, to make matters worse, we need to deal not with one but with several different
quality aspects but still come up in real life with a single number that encompasses them all. This
can then be used to determine the overall optimal solution, which is commonly done by adding up
the values for each aspect after weighting each of them by a factor (a weighted sum). Very many
other methods and adjustments are available for combining these values to give a single number.
Each gives a new twist on the algorithm's understanding of “quality.”

Summing up, an optimal solution is only optimal with respect to the quality measure that is
encoded in the objective function used to determine it. If that function is defective, so will be the
algorithm's result. Furthermore, correctly weighting different aspects against each other (even
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FIGURE 1 Alice in Wonderland typeset with a greedy algorithm [Color figure can be viewed at
wileyonlinelibrary.com]

if only a small number of aspects are part of the equation) is a difficult art and requires some
experimentation to achieve acceptable results.‡

‡During the development, the author was several times quite surprised by the changes in the solution chosen by the frame-
work when making minor changes to some constraints. In a few cases, this revealed a hidden bug in the implementation,
but usually it was due to the algorithm sacrificing the quality of one aspect in one part to get a better result for some other
aspect elsewhere.

http://wileyonlinelibrary.com
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FIGURE 2 Alice in Wonderland typeset with an optimizing algorithm [Color figure can be viewed at
wileyonlinelibrary.com]

There is thus a need for a flexible framework, one that allows the user of such an
algorithm to specify their vision of quality in the form of constraints and relationships between
different goals and enables them to approximate this vision as closely as possible in the
objective function used during optimization. Section 1.6 gives a preliminary overview on the
constraints and flexibility available in the framework described in this paper. Later sections
then zoom in on individual constraints, their implementations, and discuss the relationships
between them.

http://wileyonlinelibrary.com
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1.4 Pagination strategies and related work
While Knuth and Plass15 already introduced global optimization for micro-typography in
in the 1980s, pagination in today's systems is still undertaken using greedy algorithms that
essentially generate column by column without looking (far) ahead.

Already in his PhD thesis, Plass16 discussed applying the ideas behind line-breaking
algorithm to the question of paginating documents containing text and floats. Since then, a
number of other researchers have worked on improved pagination algorithms, eg, the work of
Wohlfeil17 addressed optimal float placement for certain types of documents in his PhD thesis and
together with Brüggemann-Klein et al,18 using dynamic programming based on the Knuth/Plass
algorithm with a restricted document model. Jacobs et al19 explored the use of layout templates
that can be selected by an optimizing algorithm also based on Knuth/Plass to best fulfill a number
of constraints.

Ciancarini et al5 presented an approach (again, based on Knuth/Plass), in which the micro- and
macro-typography is more tightly coupled by delaying the definite choice of line breaks and instead offer-
ing to the pagination algorithm a set of options per paragraph modeled as a flexible glue item. Using glue
has the advantage that the complexity of the pagination algorithm stays low compared to the approach
outlined in this paper, but the disadvantage that other aspects of the fully formatted paragraphs are
unavailable to the pagination algorithm, eg, that for certain formatting, the available breaks may be of dif-
ferent quality. In addition, if the pagination requests that a paragraph format itself to a certain height, for
example, 3.5 lines, it can only fulfill that request to the nearest line number and as these errors accumulate,
it is possible that the optimal solution is missed.

A quite different approach was taken by Piccoli et al6 to provide the necessary flexibility that
enables a globally optimizing algorithm (they too use Knuth/Plass) to find solutions: They select
and combine prepared page templates to find an optimal distribution of text among the template
placeholders such that all pages are completely filled. The input text stream is split in chunks, and
each chunk must completely fit into a template placeholder. Thus, the granularity of chunks will
both determine how huge the search space will get (and therefore, how long it will take to find a
solution) and how well the text gets distributed among the placeholders.

They then achieve filling the placeholders completely with text by manipulating the font size
of the text for a consecutive set of placeholders that belong to what they call a flow, eg, the text
following a heading on a page. For a journal with many shorter articles that needs to be assembled
totally automatically, that approach may generate acceptable quality as long as the differences in
text density stay really low and text that is experienced by the reader as belonging together (eg,
from a single article) does not show changes in density.

The authors have implemented their algorithm as an extension to a commercial environ-
ment, thus providing a complete production environment as the final rendering is left to Adobe's
InDesign® that is provided with the selected template sequence and the text chunks to be rendered
as part of the template placeholders.

However, from a typographical perspective, this approach is questionable, especially if text is
set in multiple columns as the human eyes are quite capable of spotting even very small changes
in vertical sizes and density.§ This means that for continuous text, such as novels, this is not an
option if the intention is to produce high-quality results.

§There has been 1 paragraph set on this page with a font reduced by about 0.3 mm but without changing the line spacing.
As a result, that particular paragraph needs 1 line less—does it stand out? In my opinion, it does; at least, there is a slight
queasy feeling when looking at the page, even if you cannot immediately pinpoint the source.
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Thus, why has no widely used production system, whether it be or any other, started to
use a global optimizing pagination algorithm up to now?

The answer is at least 2-fold: On one hand, due to the fact that pagination has to deal with
unrelated input streams, the problems in this space are much harder than those in line breaking,
although superficially, they have a lot in common. As a result, most of the research work so far
has focused on experimenting with certain aspects only (with the possible exception of the work
carried out by Jacobs et al20) and was less concerned in providing a production-ready solution
initially. On the other hand, typesetting requires much more than pagination, and any generally
usable system implementing a new pagination either needs to also provide all the features related
to micro-typography (which is a huge undertaking) or it needs to integrate into an existing system
like or any commercial engine.

On the commercial side, the complexity of full or even only partial optimization was so far
probably considered too high compared to any resulting benefits, and the open source system
(while offering most aspects needed for high-quality typesetting¶) is monolithic and so optimized
for speed that it is very difficult to extend it or replace some of its algorithms.

1.5 The main contributions provided by this paper
This paper presents a framework for globally optimizing the paginations of documents using flex-
ible constraints that allow the implementation of typical typographic rules. These can be weighted
against each other to guide the algorithm toward a particular desired outcome. In contrast to the
prototypes discussed in the literature, it has the full micro-typographic functionality of the
engine at its disposal and is thus able to typeset documents of any complexity.

It uses an adaption of the line-breaking algorithm by the aforementioned work,15 which
is a natural approach also deployed by other researchers. However, due to the fact that there
is limited flexibility in pagination compared to line breaking, a straightforward adaptation of
the Knuth/Plass algorithm would not resolve the pagination problem: It provides a globally
optimizing algorithm, but one that runs out of alternatives to optimize in nearly all cases.

The other main contribution of this paper is therefore the extension of this algorithm to
include 2 methods that add flexibility to the pagination process without compromising typo-
graphic quality and traditions. These are the support for the following.

Paragraph variants: Identification of paragraphs that can be typeset to different numbers of
lines without much loss of quality, then using these variants as additional alternatives in the
optimizing process.
Spread variants: Support for page spreads (ie, all columns of a double page) to be run short
or long, thereby increasing the number of alternatives for the algorithm to optimize.

Using both extensions, enough flexibility is added to the pagination process that the globally opti-
mizing algorithm is able to find a solution for nearly any document in acceptable time without
running out of candidate solutions to optimize.

1.6 The scope and restrictions of the framework
The framework is intended to support a wide variety of different applications but there are, of
course, some assumptions that restrict it in one or the other way. It assumes that the input to

¶For a discussion of limitations and failures, see the work of Mittelbach21 and for an update 23 years later.22
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the algorithm is a sequence of precomposed textual material, intermixed with vertical spaces and
that the task is to paginate this galley into columns and pages of possibly different but prede-
fined heights. In particular, this means that the horizontal width of an object plays no role in the
algorithm (everything has the same width). As a consequence, the framework cannot optimize
designs that allow textual material to be formatted to the choice of different widths.

The framework also assumes that the heights of columns used in pagination is known a pri-
ori and does not depend on the content of the textual material poured into it. It is therefore not
possible for the algorithm to balance textual material across several columns on a page and then
restart the flow on the same page as that would be equivalent to having variable column heights
that depend on signals from within the textual material.

The algorithm assumes that the textual flow is continuous and is placed into columns in a
predefined order. As implemented, the writing direction is top to bottom and left to right, but
other writing systems could be easily supported as that involves only a simple and straightforward
transformation of the algorithm's results prior to typesetting the final document.

Other than that, the framework poses no restrictions and supports all typical typographical
tasks using a system of user-specifiable constraints. In particular, it is possible to specify

• whether columns need to be filled exactly (ie, should align at the bottom);
• the alignment of columns across a spread;
• how much “extra” white space is considered acceptable in a column;
• the management of micro-typographical features such as preventing “widows and orphans” or

hyphenation across columns, etc;
• the amount of paragraph length variations that is allowed;
• the importance of conserving space, ie, preferring less pages;
• design criteria, such as a preference for headings to (always) start a new column;
• requiring a full last page# ;
• any desirable or forced column breaks to affect the algorithm.

These user-specified requirements can be either absolute (in which case, the algorithm will not
consider any solution that violates them) or they can be formulated as a preference, with the dif-
ferent constraints weighted against each other according to user specification that indicates their
relative importance. This is done by attaching higher or lower cost values to individual require-
ments. If even more granularity is needed for experimentation and research, then any part of the
objective function used for optimization can be easily adjusted.

As implemented, the framework is based on for reasons explained at the beginning
of Section 2. However, as the algorithm for determining the optimal pagination is independent
of the underlying typesetting system used, it would be possible to build a similar framework
with any other typesetting engine that is capable of generating the necessary abstract represen-
tation of the galley as input for the algorithm (as discussed in Section 2.1.2). The engine should
also be able to format a paragraph to variable number of lines and measure the quality of each
formatting.‖ Finally, it must be able to accept external directives while paginating the final
document (Section 2.1.4).

# Of course, if this is specified as a strict requirement, then the algorithm may not be able to find any solution, depending
on the given input. A simple example would be a short document that simply does not have enough material for a single
page.
‖The algorithm is still capable of operating if the formatter is not capable of this, but the number of alternative solutions
to optimize will be greatly reduced. As shown in Section 4.7, this will often mean that documents have no solution that
adheres to the specified constraints.
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1.7 Downside of applying global optimization
While globally optimizing the pagination to further automate the typesetting process sounds like
a good idea, there are a number of issues related to it that need to be taken into consideration and
require further research.

First of all, global optimization means that any modification in the document source can result
in pagination differences anywhere in the document. This is already now a source of concern for

users experiencing situations where deleting a word results in a paragraph getting longer or
being broken differently across columns. By optimizing the pagination, such types of problems are
moved from the localized level of micro-typography to the overall document level. Just consider
a book revision where a few misspellings are corrected and instead of regenerating a handful of
photographic plates for these pages, the publisher has to generate a fully reformatted book.**

However, there are also problems related to the interaction between globally optimized pagi-
nation and automatically generated (textual) content. If such generated content depends on the
pagination, for example, if a text “see Figure 3 on the following page” changes to the much
shorter text “see Figure 3 on page 13,” then this generates feedback loops between micro- and
macro-typography, ie, it might change the formatting, which might change the generated text and
the formatting. It is not difficult given an arbitrary pagination rule set to construct a document
for which there is no valid formatting possible under the conditions of this rule set. While such
situations can already occur with pagination generated by greedy algorithms, they are far more
likely if global optimization (especially with variant formatting for higher flexibility) is used.

2 A GLOBALLY OPTIMIZING FRAMEWORK USING

As the open source program by Don Knuth is undisputedly one of the best typesetting systems
in existence when it comes to micro-typography or math typesetting, it is a natural candidate for
any attempt to implement improved pagination algorithms as all other aspects of typesetting are
already provided with high quality and due to its large user base there are immediately many
people who could benefit from an improved program.

Unfortunately, the original program by Knuth23 is of monolithic design and highly optimized
so that modifying its inner working has proven to be a serious challenge. There have been a
number of such attempts though, and three of them have established themselves in the world-
wide community: is an engine written by Thánh14 as part of his PhD thesis that was the
first engine directly generating PDF output and it also provided a number of micro-typography
extensions, such as protrusion support and font expansion (hz-algorithm). These days, this

has become the default engine in most installations, ie, the program being called,
when people are processing a file. The other two (still more or less under active development)
are (see, for example, the work of Goossens24) and implemented by the
development team.25

The interesting aspect of is that it combines the features of a complete (and, in fact,
extended) engine with a full-fledged Lua interpreter that allows the execution of Lua code
inside of with full access to the internal data structures and with the ability to hook
such Lua code at various points into most algorithms, enabling the code to modify or even

**The solution in that case would be to introduce explicit pagination commands in strategic places to keep the pagination
unchanged, even if through the algorithm's eyes it is no longer optimal.
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to replace them. As Lua is an interpreted language, there is no need to compile a new executable
whenever some Lua code is modified; all it needs is the base engine to be available (which
is a standard engine in all major distributions such as Live).

As of fall 2016, has reached version 1.0; thus, the development activities are expected
to slow down with more focus on stability and compatibility compared to the situation in the past.
Thus, this version of can easily serve as a very versatile test bed for developing algorithms
that can be directly tried and used by a large user base. For this reason, the framework described
in this paper is based on

2.1 High-level workflow
The framework presented here consists of four phases and uses for the reasons outlined
above. A high-level overview is given in Figure 3 showing the phases, their inputs and outputs,
and the types of user-specifiable constraints that are applicable in the different phases.

2.1.1 Phase 1 (preprocessing)
The document, which consists of standard files, is processed by a engine without any
modification until all implicit content (eg, table of contents, bibliography, etc) is generated, and
all cross-references are resolved.†† This implicit content is stored in auxiliary files by and
reused as input in Phase 2 during the galley generation and again, in Phase 4 when producing the
optimally paginated document.

2.1.2 Phase 2 (galley metadata generation)
The engine is modified to interact with way of filling the main vertical list (from which,
in an asynchronous way, later cuts column material for pagination). An overview about the
workflow during that phase is shown in Figure 4 on the following page.

Engine modification when moving material to the galley in Phase 2
In particular, whenever is ready to move new vertical material to the main vertical list,
this material is intercepted and analyzed. Information about each block (vertical height, depth,
stretchability, if any, and penalty of a breakpoint) is then gathered and written out to an
external file. In boxes (such as lines of text) have both a vertical height and a vertical depth,
which is the amount of material that appears below the baseline, eg, the vertical size of descen-
ders of letters such as “p” or “g.” The total vertical size of boxes is then the sum of height and
depth. This distinction is important when filling columns with material, because the depth of
the last line must not be taken into consideration when determining the total vertical size occu-
pied by the material (while the depth of all other lines is). This reflects the fact that columns
and pages should align on the baseline of the last text line regardless of whether such a line
has descenders.

††Cross-references to pages or columns in the final document can only be approximated at this stage as the final position in
the optimally paginated document is not yet known. We therefore use the values produced when paginating the document
with standard (ie, with a greedy pagination algorithm) as placeholders and hope that they are roughly the same
width. They are then replaced by the correct values in Phase 4. However, as explained in Section 1.7, documents with
cross-references that depend on the pagination may not allow valid formatting and may need a manual intervention that
overwrites one or the other optimization criteria.
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FIGURE 3 High-level framework overview (Phases 1 to 4)

If possible, data are accumulated, eg, several objects in a row without any possibility for
breaking them up are written out as a single data point to reduce later processing complexity.

The modification is also able to interpret special flags (implemented as new types of “whatsit
nodes” in engine lingo) that can signal the start/end or switch of an explicit variation in the
input source. This information is then used to structure the corresponding data in the output file
for later processing.‡‡

‡‡This interface could be extended at a later stage to support controlling of the algorithm used in Phase 3 (pagination)
from within the document, eg, to guide or overwrite its decisions locally.
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FIGURE 4 Galley metadata generation (Phase 2)

Engine modification when generating paragraphs in Phase 2
The second modification to the engine is to intercept the generation of paragraphs targeted for
the main galley§§ prior to applying line breaking.

For each horizontal list that is passed to the line-breaking algorithm, the framework algorithm
determines the possible variations in “looseness” within the specified parameter settings (galley
constraints parameters). An example of a paragraph reformatted to a different number of lines is
shown in Figure 5 on the next page.

For this, the paragraph is first broken into lines according to the given h&j constraints resulting
in a paragraph with 𝓁 lines. Then, is asked to try again and line-break the horizontal list
to generate paragraphs with lines between 𝓁− min_looseness and 𝓁+ max_looseness. For
these attempts a special variation_tolerance is used, which can be set to a value different
from the paragraph_tolerance used on normal paragraphs.

§§Paragraph variations in other places, eg, inside float boxes, marginal notes, footnotes, etc, are currently not considered.
Thus, those objects always have their natural (fixed) dimensions. Extending the framework in that direction would be
possible but would considerably complicate the mechanism without a lot of gain.
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FIGURE 5 A paragraph from Alice under different looseness settings

The paragraph tolerance defines whether lines are considered acceptable to be part of an opti-
mal solution, thus with a higher tolerance will have more possibilities to chose from. It will
still use only lines with low tolerance if that leads to a solution, but it may not find any solution at
all if the tolerance is set too low and line breaking is difficult (eg, in narrow columns). Therefore,
allowing lines with high badness in emergencies might be better than overfull lines, because no
solution was found.

The situation with paragraph variants, however, is different: Variants are intended to provide
some additional flexibility for the pagination process, but they should only be used if their quality
is sufficiently high. Therefore, the line-breaking trial for variants should not consider lines with
high badness as acceptable, which means that the tolerance in these trials should be set to a much
lower value.

However, for positive values of looseness, it is not enough to check if could build a para-
graph matching it, as by default uses a fairly naive approach that would always result in the
last line containing only a single word or even only part of a single word whenever the paragraph
is lengthened.

It is therefore important to first manipulate the horizontal material to prevent this from
happening and ensure that “loosened” paragraphs stay visually acceptable to the human eyes.¶¶

The approach is to add extra penalties to the line break possibilities near the end of the para-
graph (including those due to hyphenation) so that will prefer to break elsewhere unless there
is no good alternative. Thus, if feasible, will put at least a few words into the last line. The
behavior can be observed in Figure 5, where the loose setting still has two words on the last line,
but the very loose setting ends with a single word, because, otherwise, the paragraph would have
been even worse.

¶¶As the paragraph variations with this manipulation applied are used as input to the optimizing algorithm used in
Phase 3, we will later have to reapply the manipulation in exactly the same way in Phase 4 (typesetting) on any variant
paragraph that has been chosen in Phase 3 as being part of the optimal solution to ensure that it is typeset accurately.
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For each possible variation, the paragraph-breaking trial then determines the exact sequence
of lines, vertical spaces, and associated penalties under that specific “looseness” value.

Such trials with a special looseness may fail, either because the requested looseness
cannot be attained at all, or only with a tolerance value exceeding the variation_tolerance
constraint, or because the resulting paragraph has overfull lines (like this paragraph).

Solutions with overfull lines can happen because the trials are typeset with a special toler-
ance value. Under this tolerance, the paragraph may not have any acceptable solution (ie, without
overfull lines). Starting from such a “bad” paragraph breaking as the best possibility, might
report success in making it even shorter because that does not make it worse in eyes
(ie, they are considered to be equally bad).##

The results of each successful trial are then externally recorded together with the associated
“looseness” value of that variation. For a given looseness value, the line breaking chosen by
will be optimal in the work of Knuth,8(p103) but, of course, it will usually be of a lower quality
compared to the optimal line breaking with 𝓁 lines (ie, the number of lines with looseness 0). The
algorithm accounts for this by applying a user-customizable cost factor whenever such a variant
is chosen in Phase 3 below.

Finally, instead of adding a vertical list representing the formatted paragraph on main
vertical list, the material is dropped, and a single special node is passed so that the paragraph
material is not collected again by the first modification described above.

As already indicated, the user-specifiable constraints used in this phase are those dealing with
the break costs during h&j (eg, handling of widows and orphans, breaks before headings, etc),
specifications of flexible vertical spaces (eg, skips between paragraphs, before headings, around
lists, etc), and the galley variation constraints that describe what kind of paragraph variations are
deemed acceptable and what additional costs to add if a variation with a lower paragraph quality
is chosen.

As the result of this phase, the external file will hold an abstraction of the document galley
material (the galley object model in Figure 4), including marked-up variations for each paragraph
for which valid variations exist.

2.1.3 Phase 3 (determining the optimal pagination)
The result of Phase 2 (ie, the galley object model) is then used as input to a global optimizing
algorithm modeled after the Knuth/Plass algorithm for line breaking that uses dynamic pro-
gramming to determine an optimal sequence of column and page breaks throughout the whole
document. Compared to the line-breaking algorithm, this page-breaking algorithm provides the
following additional features.

• Support for variations within the input: This is used to automatically manage variant break
sequences resulting from different paragraph breakings calculated in Phase 2 but could also
be used to support, for example, variations of figures or tables in different sizes or similar
applications.

• Support for shortening or lengthening the vertical height of double spreads to enable better
column/page breaks across the whole document.

##This behavior caused some surprise during the implementation of the algorithm until it was understood that an explicit
check for overfull lines is needed at this point.
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• Global optimization is guided by parameters that allow a document designer to balance the
importance of individual aspects (eg, avoiding widows against changing the spread height or
using suboptimal paragraphs) against each other.

The influence of such user-specified constraints is discussed in Section 3. Details of the
algorithm are then described in Section 4.

The result of this phase will be a sequence of optimal column break positions within the input
together with length information for all columns for which it applies. Also recorded is which of
the variants have been chosen when selecting the optimal sequence.

2.1.4 Phase 4 (typesetting)
This phase again uses a modified engine that is capable of interpreting and using the results
of the previous phases. For this, it hooks into the same places as the modifications in Phase 2, but
this time, applying different actions (see Figure 6).

FIGURE 6 Generate the optimally paginated document (Phase 4)
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To begin with, the vertical target size for gathering a complete column will be artificially set
to the largest legal dimension so that by itself, the algorithm will not mistakenly break up the
galley at an unwanted place due to some unusual combination of data.‖‖

Engine modification when generating paragraphs in Phase 4
Whenever gets ready to apply line breaking to paragraph material for the main vertical list,
the modification looks up with which “looseness” this paragraph should be typeset and adjusts
the necessary parameters so that generates the lines corresponding to the variation selected
in the optimal break sequence for the whole document determined in Phase 3 (pagination). At
this point, the algorithm also reapplies the modification described in Section 2.1.2 page 15 on any
paragraph for which a variation was chosen.

Engine modification when moving material to the galley in Phase 4
While is moving objects to the main vertical list the algorithm keeps track of the galley blocks
seen so far, and when it is time for a column break, according to the optimal solution, it will
explicitly place a suitable forcing penalty onto the main vertical list so that is guaranteed to
use this place to end the current column or page. Again, as a safety measure, other penalties seen
at this point that should not result in a column break will be either dropped or otherwise rendered
harmless so that internal (greedy) page-breaking algorithm is not misinterpreting them as
a “best break” by mistake.

Finally, whenever has finished a column (due to the fact that we have added an explicit
penalty in the previous step), we will arrange for the correct target dimensions for the current
column according to the data from Phase 3 (pagination). This is done immediately after has
decided what part of the galley it will pack up for use in its “output routine” (which is a set of

macros) but before, this routine is actually called.***

The result is a paginated document with globally optimized column breaks according to the
user-specified constraints.

2.2 Notes on the workflow phases
Phase 1 (preprocessing 2.1.1) is necessary to generate all implicit content so that it will be consid-
ered in the following phases. Without this phase, the page-breaking step in Phase 3 would base
its evaluation on the wrong input.

Phases 2 (galley generation 2.1.2) and 4 (typesetting 2.1.4) will require a modified/extended
engine. The workflow uses the engine for this purpose as it internally provides a Lua

interpreter to implement the modifications and the necessary callbacks into the algorithms
so that the new code can easily take control and provide the necessary changes.

The algorithm used in Phase 3 (pagination 2.1.3) is also implemented in Lua. As this phase
is executed without any direct involvement of a engine processing the source document, this
code could have been written in any computer language (and could probably be faster, depending
on language choice and implementation). Nevertheless, the use of Lua was deliberate, as it allows

‖‖As long as the calculation for deciding on a column break used by and the one used by the algorithm deployed in
Phase 3 are exactly the same, this is actually not necessary. However, requiring a 100% correspondence is not a useful
restriction; thus, this is a safety measure against deliberate or unintentional differences in this place.
***This way the engine modifications are largely transparent for the macro level and the modification will work with
some small adjustments with any macro flavor of eg, plain etc.
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to use the engine††† in all phases and this means that the workflow can be executed using
a standard installation, ie, is out of the box available for the millions of and other

flavors without the need to install any additional software programs.‡‡‡

While the typesetting phase (Phase 4 Section 2.1.4) claims that the result is a globally opti-
mized formatted document, it does not actually claim that it is a correctly formatted document
and as explained in Section 1.7, this may, in fact, not be the case. The mechanisms available in

will detect this situation, but the framework currently makes no attempt to resolve this
problem if it arises. Depending on the exact nature of the issue a further run through Phases 2
to 4 might resolve it. However, if the formatted result oscillates between two or more states then
manual intervention is necessary.

As indicated in Figure 3 on page 13 the behavior of the framework is customizable through
parameterization during all four phases. The next sections will show that more complex cus-
tomizations can be carried out as well, by providing alternative code written in Lua that modifies
the framework algorithms.

3 THE CONSTRAINT MODEL USED FOR GLOBALLY
OPTIMIZED PAGINATION

In this section, we discuss the constraints necessary to implement common and less common
typographic design criteria for pagination. In part, these are already provided by (though used
there by its greedy pagination algorithm and not in the context of global optimization). Additional
ones are added for exclusive use by the globally optimizing pagination algorithm discussed in
Section 4.

A number of user-specified constraints available as parameters of the engine define the
set B of breakpoints available in a given document galley and the numerical “costs” associated
with such breakpoints (see Section 3.1). With P, we denote the set of all partitions of the galley
along such breakpoints, ie, the set of all subsets of B.

Furthermore, user-specifiable constraints are implemented by defining a suitable objective
function  that numerically measures the “inverse quality” (lower values are better) of a partition
p = {b0, … , bn} ∈ P, ie, how well p adheres to the given constraints. By attaching different
weights or using different formulas in the objective function or when calculating the breakpoint
costs, it is possible to adjust the relationships between different (possibly conflicting) constraints
and favor some over others. Some examples are given below.

Thus, abstractly speaking, the act of globally optimizing the pagination of a galley means
finding a p ∈ P for which  (𝑝) is minimal. Doing this by evaluating  (𝑝) for every possible
partition is impractical as most of the partitions will result in an impossible or ridiculously bad
pagination (ie, with overfull or nearly empty columns). Furthermore, the number of partitions
grows exponentially in the number of breakpoints so that even for small galleys the number of
cases to evaluate will exceed the capabilities of any computer. It is therefore important to reduce
number of evaluations significantly while still ensuring that

min
𝑝∈P

 (𝑝) (1)

††† can be run as a standalone Lua interpreter by calling it under the name texlua.
‡‡‡Lua code is interpreted and available in the form of ASCII files. It can therefore be easily provided as part of the standard

distributions or (with older installations) manually downloaded and installed.
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will be found. As we will see, this problem can be solved with dynamic programming techniques
as long as the objective function has certain characteristics.

3.1 Constraining the available breakpoints
already provides a sophisticated breakpoint model to describe different typographic require-

ments. In , it is used to guide its greedy pagination algorithm but clearly all of these constraints
make sense for a globally optimizing algorithm as well; thus, we use those unchanged. The
breakpoints of a galley are modeled in as follows.

• Breaks are implicitly possible in front of vertical spaces if such spaces directly follow a box (eg,
a line of text). Such breaks are normally neutral, ie, have no special costs associated with them
(although there is a parameter to change that). As lines of a paragraph are always separated by
spaces (to make them line up at a distance of a “baselineskip”), this means that it is usually
possible to break after each line of text.

• Breaks are also possible at the so-called penalty nodes that can be explicitly added through
macros (such as a heading command) or implicitly by through parameters in certain sit-
uations. The value of the penalty defines the “cost” to break at this point: A negative value
means there is an incentive to break here, and a positive value means a break at this point is
less desirable.

• However, a value of 10 000 or higher means a break is totally forbidden, thus by adding a penalty
with that value a break at a certain point can be prevented.

• In the opposite direction a value of −10 000 or less means that a break is forced, ie, will
always break at this point.

• A number of typographical conventions are modeled by through parameters that generate
penalty nodes, eg, between the first and second lines of a paragraph adds a penalty with
the value of ∖clubpenalty (to model orphans) and between the last and the second last it
adds a penalty of ∖widowpenalty. If a line ends in a hyphen it adds ∖brokenpenalty, etc.

Thus, by setting such penalty parameters to appropriate values, certain breakpoints can be made
more or less attractive (or can be totally forbidden). For example, by default adds a penalty
of −300 in front of a section heading, thus breaking in front of headings is encouraged. In the
opposite directions, widows and orphans are frowned upon therefore ∖widowpenalty and
∖clubpenalty have a default value of 150 and many journal designs even require 10 000, ie,
totally forbid orphans and widows.

3.2 Constraining the column “badness”
As mentioned in the introduction, one quality factor for a good pagination is the white space
distribution in the columns, ie, how far this distribution deviates from the optimal distribution
as specified by the design for the document. If every vertical space s in a document has a natural
height s and an acceptable§§§ stretch +

s and shrink −
s , then it is possible to define a function

that calculates a “badness” for a column that contains a certain amount of material.
Intuitively speaking, that badness should be 0 if all spaces in the column are set exactly to their

natural height, and it should increase if the spaces have to be stretched or need to be compressed

§§§Acceptable, in the eyes of the designer of the particular document design.
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to fit all material into the column. Compression beyond a certain amount should not be possible
(to avoid overlapping material in the column); thus, a natural limit would be disallowing more
than the available shrink.

Stretching beyond the available stretch amount is certainly also undesirable. However, exper-
iments show that with many documents it is not possible to find any solution at all if the allowed
space distribution is handled too rigidly. A practical badness function should therefore penalize
such loose columns heavily, but not totally disallow them.

The badness function used by default in the algorithm outlined in this paper is given by

badness
col i

(⟨material⟩) = ⎧⎪⎨⎪⎩
0, if there is infinite stretch within ⟨material⟩
∞, for r < −1, ie, column is overfull
100|r|3, for r ⩾ −1,

(2)

where r is the ratio of “space needed to fill column i” and stretch available, ie,
∑

s
+
s (in case of

stretching) or the ratio of “shrink amount necessary to fit the material into column i” and the
shrink available, ie,

∑
s

−
s . If stretching or shrinking is required but no stretch or shrink available,

we set r = ∞; thus, the badness too will become ∞ in the above formula.
The precise form of the badness formula in Equation (2) is admittedly an arbitrary choice,¶¶¶

but due to its cubic form, it does penalize larger deviations from the desired state more strongly
and thus models the general expectation quite well. Nevertheless, experimenting with different
functions to see how that influences, the algorithm behavior could be an interesting study in itself.
This is supported by the framework by providing the badness function as a user-redefinable Lua
function.

With a badness function like the one given in (2), we can specify a customizable constraint
that drops inadequate solutions by defining a constant ctolerance such that any solution containing
a column with a badness higher than ctolerance is rejected.

Thus, if p = {b0, … , bn} is a partition of the document into n columns (with b0 and bn the
document start and end, respectively, and the other bi the chosen breakpoints) and if ci is the cost
associated with breakpoint bi we can define a simple objective function  as follows:

 (𝑝) =
⎧⎪⎨⎪⎩

n∑
i=1

badness
col i

(bi−1, bi) + ci, if ∀i ∶ badness
col i

(bi−1, bi) ⩽ ctolerance

∞, otherwise.
(3)

The above objective function can be improved in several directions. In its current form, it does not
distinguish solutions with different numbers of columns if the additional columns have badness
and break costs both zero or canceling each other. However, minimizing the number of columns
is an often required constraint. It also has the disadvantage of favoring solutions with a few really
bad columns or really high costs over an overall lower badness and cost; in other words, it is not
minimizing the overall badness and cost values at all.

The first problem can be resolved by adding a customizable ccolumn penalty that will be added
for each column, ie, n times and the second problem by doing the summation over squares or
cubes of the badness and costs.

¶¶¶Modeled after the badness function used by to define the badness of lines in line breaking and the badness of pages
when deciding where its greedy algorithm should cut the next page.
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Thus, an improved definition for  is given by

 (𝑝) =
⎧⎪⎨⎪⎩

n∑
i=1

𝛿i, if ∀i ∶ badness
col i

(bi−1, bi) ⩽ ctolerance

∞, otherwise,
(4)

with

𝛿i = ccolumn +

⎧⎪⎪⎨⎪⎪⎩

(
badness

col i
(bi−1, bi)

)2
+ c2

i , for ci > 0(
badness

col i
(bi−1, bi)

)2
− c2

i , for − 10 000 < ci < 0(
badness

col i
(bi−1, bi)

)2
, otherwise (forced break).

Just like the badness function in Equation (2), the above objective function is only one possible
way to constrain the solution space, but one that has proven to produce high-quality results by
providing a good balance between trying to minimize the badness over all columns while putting
also some weight onto a certain level of uniformity across all columns.

The influence of column badness compared to the influence of the break costs could be
adjusted by changing either definitions in (2) or (4) or changing the cost values for the individual
breakpoints, with the latter being the most flexible approach.

3.3 Constraining the use of paragraph variations
For the paragraph variation extension, we provide user constraints for defining the range of vari-
ations that are tried (min_looseness and max_looseness) and the minimal quality all lines
of a variant paragraph must have (variation_tolerance) to be considered at all.

To find the optimal line breaking for a paragraph, calculates a numerical cost value for
each possible line breaking. For each of the variations, this cost value will be obviously higher
than the one calculated for the optimal result. Thus, we can use the difference Δ between the
two and add it (multiplied with a user-customizable factor cpara variation) to the column costs if
a particular variant paragraph is being used in the pagination solution. This factor then allows
the user to specify how much the algorithm should disfavor solutions that use paragraph vari-
ants, ie, diverge from the optimal micro-typographic solutions when searching for a suitable
pagination.

To incorporate the paragraph variation extension into the objective function  , we have to
add in another term that sums up the additional costs generated in each column due to selecting
paragraph variants instead of the optimal paragraphs.

Thus, a suitable form that includes this extension would take the following form:

 (𝑝) =
⎧⎪⎨⎪⎩

n∑
i=1

𝛿i +
n∑

i=1
𝛼i, if ∀i ∶ badness

col i
(bi−1, bi) ⩽ ctolerance

∞, otherwise,
(5)

with

𝛼i = cpara variation ·
∑

para variations
used in col i

Δ (the Δ values depend on the para variations!).
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3.4 Constraining the use of spread variations
For the double spread variation, we provide cspread variation as a user-specifiable constant to penalize
running a column long or short. Note that with the spread variation, we introduce a dependency
between columns; as for typographical reasons, all columns of a spread should be handled in the
same way. That is, the first spread has only 1 page, whereas all the later ones have 2 pages. Thus,
if each page has k columns and we denote by 𝜎 = {𝜎1, … , 𝜎n} the modifications we make to each
column, then we have 𝜎1 = · · · = 𝜎k, 𝜎k+1 = · · · = 𝜎3k, 𝜎3k+1 = · · · = 𝜎5k, etc.

The objective function from (4) can then be augmented to cover both extensions as follows
(note that  now takes both p and 𝜎 as input):

 (𝑝, 𝜎) =
⎧⎪⎨⎪⎩

n∑
i=1

(𝛿i + 𝛼i + 𝛾i) , if ∀i ∶ badness
col i

(bi−1, bi) ⩽ ctolerance

∞, otherwise,
(6)

with

𝛾i =

{
cspread variation, if 𝜎i ≠ 0 (short or long spread)
0, otherwise.

More complex definitions for 𝛾 i are possible, for example, by providing different constraints
for long and short spreads and by adding some extra costs if the sequence changes directly from
long to short or vice versa, eg, a definition such as

𝛾i = cincompatible spread · (|𝜎i − 𝜎i−1| − 1) + |𝜎i| · ⎧⎪⎨⎪⎩
cshort spread, if 𝜎i < 0 (short spread)
clong spread, if 𝜎i > 0 (long spread)
0, otherwise.

(7)

However, at the moment, the algorithm described in Section 4 uses the simpler definition from
Equation (6).

3.5 Finding the minimum  (𝑝, 𝜎)
As mentioned above, given m breakpoints in a galley, we have a total of 2m possible partitions in P
to consider. This makes a simple enumeration approach, therefore, clearly intractable. However,
as long as the objective function used has certain characteristics, we will see that the problem can
be solved efficiently though dynamic programming techniques.

To successfully apply dynamic programming, we need to be able to formulate the problem as a
number of subproblems that share common subsubproblems, and it is necessary that the problem
exhibits optimal substructure. By this, we mean that an optimal solution to the problem consists
of optimal solutions to its subproblems.

By solving the common subsubproblems only once and remembering an optimal solution for
them, we can successively build optimal solutions to larger subproblems, knowing that due to
the optimal substructure, an optimal solution to a subproblem will only contain optimal subsub-
problems. Thus, we do not have to remember any of the nonoptimal solutions to subsubproblems,
thereby considerably reducing the solution space to evaluate.

If we look at the pagination problem of finding p ∈ P with minimal  (𝑝, 𝜎) for some given 𝜎,
we can easily see that it can be formulated as a problem with overlapping subproblems and that
with an objective function like the one given in Equation (6), it exhibits an optimal substructure.
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Assuming each page has k columns and given a partition p = {b0, … , bn} and a spread varia-
tion sequence 𝜎 = {𝜎1, … , 𝜎n}, then this partition will generate s = ⌊(n− 1+ k)∕2k⌋+ 1 spreads
the last one possibly not fully filled with columns. If we denote by n′ the column number of the
last column in the second-last spread, ie, n′ = (2(s − 1) − 1)k, then 𝑝′ = {b0, … , bn′ } defines a
subpartition of p that generates all but the last spread.

Now, we have

 (𝑝, 𝜎) =
n∑

i=1
(𝛿i,+𝛼i + 𝛾i)

=
n′∑

i=1
(𝛿i,+𝛼i + 𝛾i) +

n∑
i=n′+1

(𝛿i,+𝛼i + 𝛾i)

=  (𝑝′, 𝜎′) +
n∑

i=n′+1
(𝛿i + 𝛼i + 𝛾i), (8)

where 𝜎′ = {𝜎1, … , , 𝜎n′ }. The sum
∑n

i=n′+1(𝛿i + 𝛼i + 𝛾i) can be thought of the extra costs added
by the columns in the last spread. Now, the term 𝛿i in this sum is independent of the breakpoints
in p′ and the spread variations 𝜎′ of the first spreads (it depends on 𝜎n′+1 = · · · = 𝜎n though). The
paragraph variation term 𝛼i always depends only on the situation in column i and the term 𝛾 i for
the columns of the last spread is independent of 𝜎′ as we have made the split after the last column
of a spread.

Thus, if p is an optimal solution for paginating the document into n columns under a given
spread variation 𝜎, then p′ must be an optimal solution for paginating the partial document from
b0 to bn′ , ie, into s fully filled spreads. If p′ would not be optimal, we could replace it with an
optimal pagination 𝑝′′, ie, one with  (𝑝′′, 𝜎′) <  (𝑝′, 𝜎′), which would contradict that  (𝑝, 𝜎) is
minimal.

By the same argument, we can see that (𝑝′, 𝜎′) is, in fact, an optimal solution regardless of the
chosen spread variations, ie, replacing 𝜎′ by some other 𝜎′′ cannot improve the result. However,
this argument only works if we choose the simpler definition for 𝛾 i from Equation (6). If we use
the definition from (7) instead, then the 𝛾 i from the columns of the last spread have a dependency
on 𝜎n′ , which is part of  (𝑝′, 𝜎′). Thus, in that case, an algorithm would need to work harder and
keep more of the potential partial solutions in memory.

On the other hand, if we keep 𝜎 fixed, then the above argument is true for any value of n′ as
then, the terms in the right-hand sum are always independent of  (𝑝′, 𝜎′).

To find the optimal solution, it is therefore sufficient to first find all breakpoints that can end
the first column within the given constraints and all possible values for 𝜎1. Then, starting from
those breakpoints, find all breakpoints that provide a solution to end the second column using
𝜎1 = 𝜎2. This continues until we reach the end of a spread, in which case, we only need to
remember the best way to reach this point, ie, the one with  (b0, … , bn′ , 𝜎) for any 𝜎 because of
Equation (8).

Then, the process reiterates, trying all possible values for 𝜎n′+1 as we are at the start of
a new spread. This continues until we finally reach the end of the document with bn as our
last breakpoint. This breakpoint may have been reached several times using different values
for 𝜎n, and the optimal solution for the pagination of the whole document is then simply the
sequence of breakpoints through which we reached that last breakpoint with minimal  ; some-
thing that can be easily obtained by backtracking through the partial solutions remembered along
the way.
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As we will see below, this approach will result in an algorithm that has a quadratic runtime
behavior in the number of breakpoints; in fact, if all columns have the same height, it will even
run in linear time.

4 AN ALGORITHM FOR GLOBALLY OPTIMIZED
PAGINATION

In the following, we discuss a slightly simplified version of the algorithms used in the pagina-
tion phase (Phase 3) of the framework. As mentioned before, the base algorithm is a variation
of the Knuth/Plass algorithm for line breaking suitably changed and adjusted for the pagination
application. In particular, it uses a somewhat different object model to account for the pagination
peculiarities and to support the extensions.

On a very high level of abstraction, one can build an object correspondence between the algo-
rithms as follows: words in Knuth/Plass correspond to paragraphs in pagination; hyphenation
points in words to lines that allow column breaks; and spaces between words to (stretchable) ver-
tical spaces between paragraphs or other objects on the galley. However, while words or partial
words have only a width that is used by the Knuth/Plass algorithm, objects for the pagina-
tion algorithm have both a height and a depth as we see later and both need to be separately
accounted for.

While the double spread extension (Section 4.4) has no natural application in line breaking,
the variation support extension (Section 4.5) could be incorporated back into a line-breaking
algorithm: Individual variation paths would become alternate words or phrases and a global opti-
mizing line-breaker would then pick and choose among them, to best satisfy other requirements,
such as the desired number of lines, number of hyphenated words, tightness of white space, etc.
This would, for example, support and simplify the approach outlined by Kido et al26 on layout
improvements through automated paraphrasing.

4.1 Preliminary definitions
The input for the pagination algorithm is the galley object model generated in Phase 2. This is
a sequence of objects x1, x2, … , xm, where each xi is either a “text” block ti that will always be
present in the final paginated document (eg, textual material) or a “breakpoint/space” block bi at
which the galley may get split during pagination.

Usually a text block represents a single line of text in the galley. However, if there is no legal
breakpoint between 2 or more lines, then all such lines and any intermediate spaces are combined
by the process in Phase 2 into a single text block. For example, if widows and orphans are dis-
allowed, then a 3-line paragraph would have no legal breakpoint and, thus, would form a single
block. Other examples are multiline equations or code fragments that are marked as unbreakable
in the source.

In a similar fashion, consecutive vertical spaces in the source will be combined into a sin-
gle breakpoint block as the galley can only be broken in front of the first of such spaces. If,
however, a space in the source is followed by an (explicit) penalty, then this starts a new break-
point block to represent the additional breakpoint. Thus, without loss of generality, we can
assume that the block sequence alternates between single text blocks and one or more consecutive
breakpoint blocks.
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If a break happens at bi, then that block gets discarded (in particular, it does not contribute
to the height of the columns on either side of the break).### In addition, all directly following
breakpoint blocks bi+1, bi+2, … will also be discarded. This reflects the fact that spaces between
textual elements are expected to “vanish” at column/page breaks.

Each block xi has an associated heightxi , stretch+
xi

, and shrink−
xi

component that describe
the block's contribution to the galley and in case of breakpoint blocks, also an associated penalty
bi , indicating the cost of breaking at this block.

Additionally, each text block ti has an associated depth component ti that holds the size of
the descenders in the last line of the block. This value is not directly incorporated into the ti as
it should not participate in height calculations if ti is the last block before a break, as explained
earlier. For breakpoint blocks, bi is always 0.

For any i < j, we define coli, j to be the material between the 2 breakpoints bi and bj, ie, the
sequence of all blocks xafter(i), … , xj−1, where xafter(i) is the first text block with an index greater
than i (as all breakpoint blocks directly following a break are dropped). We call this a “column
candidate” as it may be the material that gets placed into a column by the algorithm. The natural
height of its content is

coli, 𝑗 =
𝑗−2∑

k=after(i)

(
xk +xk

)
+x𝑗−1 , (9)

its depth is coli, 𝑗 = x𝑗−1 , its stretch is +
coli, 𝑗

=
∑𝑗−1

k=after(i) 
+
xk

, and its shrink −
coli, 𝑗

is defined in the
same way.

If Ck is the target height for column k in the final document, then we denote by Qk
i, 𝑗 the cost

value (the inverse quality, ie, lower values mean higher quality) calculated for placing the material
coli, j into column k. Its definition is given by

Qk
i, 𝑗 =

⎧⎪⎨⎪⎩
∞, if coli, 𝑗 − −

coli, 𝑗
> Ck

𝑓

(
Ck,coli, 𝑗 ,

+
coli, 𝑗

,−
coli, 𝑗

,b𝑗

)
, otherwise.

(10)

If there is no way to squeeze the material into the available space (ie, when the column is overfull
after applying all available shrink), we have Qk

i,𝑗 = ∞. Otherwise, the function f is used to provide
a measure for how well the content sequence fills the column, eg, how much space is left unused.
For its precise definition, many possibilities are available, provided the function has no depen-
dencies on breakpoint choices made earlier, or if it does, only needs to look back through a fixed
number of earlier breakpoints to ensure applicability for dynamic programming. By default, the
framework currently uses the “badness” function that is also used by greedy algorithm for
page breaking, ie, the badness function discussed in Section 3.2, ie,

Qk
i, 𝑗 =

{
∞, if coli, 𝑗 − −

coli, 𝑗
> Ck

𝛿k, otherwise.
(11)

However, this could be altered and made more flexible.

### In the remainder of this paper, we therefore usually talk about “the breakpoint b” rather than “the breakpoint at
breakpoint block b” if there is no confusion possible.
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If badnesscol k(bi, b𝑗) ⩽ ctolerance for some customizable parameter ctolerance, we call coli, j a fea-
sible solution for column k in the final document (or, if all columns have the same target height,
a feasible solution for all columns), otherwise, an infeasible one that we ignore.‖‖‖

The goal of the algorithm can now be formulated as the quest to find the best sequence of
breakpoints b0, b2, … , bn through the document such that all Qk

bk−1,bk
are feasible and

Db0,… ,bn =
n∑

𝓁=1
Q𝓁

b𝓁−1,b𝓁
(12)

is minimized (with b0 and bn representing start and finish of the document, respectively). In the
world, D is usually called the demerits of the solution.

To solve this, it is not necessary to calculate Qk
i, 𝑗 for all possible combinations of k, i, and

j because Qk
i,𝑗 = ∞ implies Qk

i, 𝑗+1 = ∞. Furthermore, if b0, … , bk and b0, b′
1, … , b′

k−1, bk are
2 breakpoint sequences ending at the same place, the algorithm only needs to remember the best
of the 2 partial solutions, because extending the sequences to bk+1 means adding Qk+1

bk ,bk+1
; thus, the

relationship between the extended sequences will stay the same.
The algorithm therefore loops through the sequence of all xi, thereby building up all partial

breakpoint sequences b0, … , bk that are possible candidates for the best sequences, ie, applying
the pruning possibilities outlined above. For this, we maintain a list active nodes A = a1, a2, …
where each ai is a data structure that represents the last breakpoint bk in some candidate sequence
plus some additional data.**** This list is initialized with a single active node representing the
document start.

While looping through xi, we maintain information about total height, stretch, and shrink
from the start of the document up to xi. In the data structure for an active node a, we record the
column number k that ended in this node and the total height, stretch, and shrink from the start
of the document to bafter(a) so that calculating, for example, cola,b𝑗

becomes a simple matter of
subtracting the total height recorded in a from the total height at bj.

Da is defined to be the smallest demerits value that leads up to a break at a, ie, Da = Db0,… ,bk

for some sequence of k + 1 breakpoints with break(a) = bk. Recording this value in the active
node data structure for a makes it easy to prune those active nodes that cannot become part of the
final solution and to arrive at Equation (12) eventually, as we have Da′ = Da + Qk+1

bk ,bk+1
for a newly

created active node a′ at breakpoint bk+1.
Whenever we encounter new possible candidate sequences, we compare them and add corre-

sponding active nodes for the best of them. In addition, when an active node a is so far away from
the current block xi such that Qk+1

a,xi
= ∞, we remove the active node from the list as the partial

sequence represented by a can no longer be extended to become the best solution.

4.2 Details of the base algorithm
The overall algorithm is detailed out in Figure 7 and works as follows: We start by initializing
the active list with a single node representing the start of the document. For i = 1, … ,m, ie, all

‖‖‖There are cases where it is necessary to consider infeasible solutions as well, but these are boundary cases that we
ignore for the discussion here.
****Again, it is convenient later on to talk about “the breakpoint a” instead of “the breakpoint b that is associated with the
active node a” if there is no possible confusion.
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FIGURE 7 The main algorithm (Phase 3)
Activities when encountering a break block are further detailed in Figure 8 on the facing page.
Generating new active nodes with or without double spread support is outlined in Figure 9 on page 32.
Finally, the handling of paragraph variations is further detailed in Figure 10 on page 34.
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FIGURE 8 Handle a break block (Phase 3)

blocks in the galley model, we then have to distinguish the following cases.

Case xi = ti: We update the totals seen so far by adding ti ,
+
ti

, and −
ti

, respectively. The depth
ti is not yet added at this point.

Case xi = bi: A possible breakpoint; the detailed workflow for that case is shown in Figure 8.
We loop through all active nodes a ∈ A and evaluate

𝛽 = badness
column(a)+1

(a, bi)

using the badness function from (2) to see how well it works to form the column column(a)+1
with the material between a and bi, ie, with cola,bi .

If 𝛽 ⩽ ctolerance, we remember cola,bi as one feasible way to end column column(a) + 1 at
breakpoint bi.

Otherwise, if ctolerance < 𝛽 < ∞, we consider cola,bi an infeasible way to end the column that
we normally ignore.†††† By suitably ordering the active nodes, we can ensure that all further
active nodes will also have ctolerance < 𝛽.

††††Exception: If the current break is forced and we have not seen a feasible solution so far, we need to keep the best of the
infeasible ones, as otherwise, the active list would be empty afterward.
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This is achieved by grouping all active nodes of the same column class‡‡‡‡ together and
within each group ordering the active nodes by their distance from the start of the document
(earlier ones first). Given a badness function as the one defined by (2), this means that if
the material that is put into the column is already been stretched out, the badness will get
worse if we put less material in.
Thus, as long as bi is not a forced break and we are already stretching we do not need to
consider any further active node in the current column class as it will have a worse badness.
Thiswill speedupthealgorithmconsiderably,especially if there isonlya single-column class.

Otherwise, if 𝛽 = ∞, we remove the active node a as it is too far away from bi and cannot
form a feasible solution with this or any later breakpoint.

In either case, if bi is a forced break, we also remove the active node a as it cannot form
a column with a later breakpoint. Because of this necessary housekeeping, we cannot end
the loop prematurely in case of forced breaks.

Then, we move to the next active node unless the loop ended prematurely above, in which
case we move to the first active node in the next column class if any.

Once all active nodes are processed, we determine bafter(i) so that the total height, stretch, and
shrink from the beginning of the document to this breakpoint can be calculated for any newly
created active nodes associated with bi.
We then look at all the newly collected candidate solutions ending in bi, and for each different
column k, we select the best candidate (having the smallest value of

∑k
𝓁=1 Q) and record a

new active node for it. Infeasible candidate solutions with ctolerance < 𝛽 ⩽ ∞ will normally be
thrown away at this point unless they are the only way to proceed, ie, if without one of them
the active list would end up being empty.
Finally, we update the totals seen so far by adding the new height and the previous depth
(bi +xi−1 ), and the stretch and shrink +

bi
and −

bi
. This has to happen after generating new

active nodes as the material is not part of the current column if a break is taken at bi.
Finally, after having processed xm, which is the last node in the document and supposed to be

a forcing breakpoint, we have only active nodes left that correspond to xm (but possibly to different
columns/pages). Out of those we select, the one with the smallest Da as the best solution. From
this active node, we can move backward through the active nodes that lead to it, to obtain the
complete breakpoint sequence of the optimal solution.§§§§

4.3 Complexity and search space
In the algorithm as described, the cost function Q that weights the different constraints against
each other is used to obtain the final solution (by minimizing

∑
Q) but to limit the search space

only the status with respect to the column badness is evaluated. This means that solutions with
a column badness higher than ctolerance are disregarded even if their Q-value may be lower than
others that are being considered.

One can informally describe this behavior as follows: Different constraints can be weighted
against each other but only as long as one constraint is not violated too badly.

‡‡‡‡Abstractly speaking, a column class is defined by the sequence of heights for all future columns that still need to be
built. Thus, if all column heights are equal there is only one column class. Otherwise, if 2 active nodes end different
columns, their column class will usually be different. In case of double spread support, the column class may even differ
if the active nodes end the same column (since the following column may be run short or long, ie, differ in height).
§§§§From an implementation point of view this means that we cannot throw active nodes away when they get removed
from the active list as their info may still be necessary in this step.
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A different approach would be to limit the search space by requiring that Q is lower than a
certain constant, but from a user interface perspective, it is much harder to understand the signif-
icance of the cutoff point if it is a combination of several constraints is used to generate its value.

Technically, although the 2 ways are identical, as it is always possible to provide a definition
for f that results in the behavior as implemented; thus, it is more a matter of user interface style
than anything else.

If the column heights vary throughout the document, then the complexity of the base
algorithm is of order O(m2), where m is the total number of blocks xi in the document. If the
algorithm would calculate all coli,j then this would be m(m − 1)∕2 computations; thus, this gives
us an upper bound. However, since many of them will be naturally infeasible, the number of cal-
culations actually needed to be carried out can be reduced a lot, making the problem computable
even for larger values of m.

The main loop has to be executed for each block and for xi = bi, which can be assumed to
happen about half of the time and one needs to calculate cola,bi for all a ∈ A at this point. Now,
the number of active nodes a with column(a) = k in that list is bounded by the first line in
Equation (10) as active nodes get deactivated, once they are too far away from the current break-
point, ie, more than Ck plus any available shrink in the material. Thus, assuming the column
target height Ck is bounded (which it had better be in a real life scenario), as well as the ability
for material to shrink, then the maximum number of active nodes a with column(a) = k will be
smaller than c · n with c as a small constant and n the number of breakpoints possible in material
of height maxk(Ck).

However, due to the variation introduced by the ability of material to stretch and shrink, the
active list will not contain just nodes related to a single column, but over time will grow and
contain nodes related to different columns. If we assume, for example, that there is ±5% flexibility
generally, then after looking at breakpoints for roughly 20 columns worth of material, we may
find active nodes ending at column 19 (material was always stretched) or 21 (material was always
compressed) beside those for column 20 which would be the natural length. Thus, with m growing
the length of the active node list A will grow proportionally to it and although that factor of growth
would be very small, it will give us a complexity bound of O(m2).

However, there is a very common subclass of layouts, in which the situation is much better: If
the target column heights Ck are equal for all columns or all columns after a certain index and if
the cost function Q only depends on general characteristics such as a common column size,¶¶¶¶

Then, it is possible to collapse different feasible solutions for a given breakpoint to one even if
they are for different columns. This will reduce the search space that the algorithm has to walk
through considerably, and the complexity will be reduced to O(m) as now the maximum length
of the active list is bounded by a constant.

4.4 Double spread support
Providing support for shortening or lengthening the columns of a double spread means that if
the active node a represents a column break for the last column k on a double spread, then the
calculation of Qk+1

a,b in the main loop needs to be done 3 times with different values for the height

¶¶¶¶This is the case for Q in the base algorithm as it only takes Ck as column-related input. In the double spread extension,
the variant height Va and, implicitly, the column type Ta (which is a function of k) are additional inputs to Q and so
individual active nodes need to be maintained for any combination of their values. Here, collapsing could happen for all
columns that share the same type and the same height variation value.
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FIGURE 9 Double spread support (Phase 3)

of column k+1, namely, Ck+1 and Ck+1 ± variation and we can only deactivate a once Q is∞ for all
different column heights. Furthermore, for column k + 1, we now need to generate a new active
node for each combination of k + 1,Ck+1 + variation for which there exists a feasible candidate.

On the other hand, if such a new active node a′ has been created for column k + 1, then
whatever height has been used for column k + 1 needs to be reused when evaluating Qk+2

a′,b′ for
some breakpoint b′. In addition, the same happens for all further columns of that spread. Thus,
the target height as input to f is no longer just depending on the current column but also on the
situation on previous column(s). It can be varied if we are starting a new spread or it needs to be
whatever the previous column was if we are on any other column of the spread.

To support this efficiently, we extend the active node data structure to keep track of the type
of column Ta that will start at a (ie, a function of k) and the amount of height adjustment Va that
should be used on that column.#### Then, at the point in the algorithm where we are generating
new active nodes from feasible candidates (see Figure 9), we check the type of column that has
started by the current active node a and ended at the current breakpoint as follows.

• If Ta = last, then the next column has flexibility and can be run a line long or short. We
model this by generating at this point not 1 but 3 new active nodes that are identical except
for the variation amount Va to be used on the next column: This is set to 0, or ±baselineskip,
respectively.

• If, on the other hand, Ta ≠ last, then the variation amount is predetermined by the value
specified in the active node a that was used in the feasible candidate. For each group of feasible
candidates (with the same value of k and Va), we therefore generate a single new active node
a′ and set Va′ = Va.

#### Think of Ta as recording “column x out of y” so that each column is identifiable, and we can test if we are in the last
column of a spread.
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It is important to reiterate that the above means that partitioning of the feasible candidates in
groups is not just based on the values for column k but on k and Va (the latter only if Ta ≠ last)
and that for each such group one needs to generate a new active node (or a set of active nodes).

In case Ci is constant, partitioning needs to happen only on Ta and Va, which reduces the
complexity but still means that, as compared with the base algorithm, a noticeable number of
extra active nodes need to be generated and processed.

The only other modification that is still needed, is to extend the definition of the cost function
Q from Equation (10), as it now needs to incorporate the value of Va

Qk,Va
i, 𝑗 =

⎧⎪⎨⎪⎩
∞, if coli, 𝑗 − −

coli, 𝑗
> Ck + Va

𝑓

(
Ck,coli, 𝑗 ,

+
coli, 𝑗

,−
coli, 𝑗

,b𝑗 ,Va

)
, otherwise.

(13)

The check whether or not the material fits the column is adjusted to include the height varia-
tion and the function f is extended to accept Va as input so that deviations from the norm (Va ≠ 0)
can be appropriately penalized by adding to the value returned by Q. By default, the framework
uses the following definition for f:

𝑓

(
Ck,coli, 𝑗 ,

+
coli, 𝑗

,−
coli, 𝑗

,b𝑗 ,Va

)
=

{
𝛿k+Va + cspread variation, for Va ≠ 0
𝛿k, otherwise.

This way, if a column is run long or short, the constant cspread variation is added to the demerits;
thus, by changing the value for this constant, one can make it more or less likely that the height
of double spreads get changed by the algorithm.

4.5 Variation support
Support for variants in galley material (eg, paragraphs with different line breaks resulting in differ-
ent number of lines, or in a different distribution hyphenation points) is handled by introducing
new types of control elements ci in the input stream that signal “start,” “switch,” and “end” of a
variation set. Start and switch controls have an associated penalty ci that is used to penalize the
choice of that particular variation.

One difficulty introduced by variations is that they provide different amounts of material
along their variation paths. Thus, the distance from the start of the document to any breakpoint
b after the variation block is no longer a single well-defined value. Instead, it depends on the
route through which b has been reached. By supporting multipath variations as well as variations
within variations, this can get arbitrarily complicated. In the algorithm, this is resolved by manip-
ulating the data stored in active nodes essentially by pretending that the document has started
on an earlier or later point. This way, it becomes transparent for the calculation of cola,b through
which variation paths b has been reached.

The paths from all variation sets are uniquely labeled so that every possible way to move from
the start to the end of the document can be uniquely described by simply concatenating the path
labels.‖‖‖‖

‖‖‖‖The precise method is of no importance, as long as it is possible to exactly reconstruct the selection made to achieve
the best solution. In the prototype implementation, sequential numbers for both the variation sets and the individual
paths within them have been used. For example, 1-2;2-2;3-1 means that the second path was taken in the first and
second variation set, whereas the first path was taken in the third variation set.
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FIGURE 10 Handle paragraph variation data (Phase 3)

The active node data structure is extended to record in path(a), the cumulated path through
all variations up to the break point associated with a.

For variation support, the main loop of the base algorithm is then extended as outlined in
Figure 10 by managing the following additional cases.

Case xi = ci with type(ci) = start This signals the start of a variation set. We make a copy
of the active node list Asaved ← A, and we also file away the totals H̄start, S̄+

start, and S̄−
start from

the beginning of the document to the current position for later use. A label L for the current
variation path is chosen and P = ci is saved as the penalty to add to the demerits in case this
path is chosen.***** Then, we proceed with the next block xi+1.

*****The penalty ci
has been calculated in Phase 2 from the difference in quality between the optimal paragraph breaking

and the paragraph breaking with a nonzero looseness value returns a numerical value for the line-breaking quality).
This difference is then multiplied with the user-constraint cparavariation to obtain that penalty.
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Case xi = ci with type(ci) = switch In this case, we reached the end of a variation path.
All nodes currently in the active node list A are either on the current variation path (because
they have been only recently created) or they are from before the variation block, but we have
evaluated the breakpoints on the variation path against them.
Thus, we update all a ∈ A by appending the label for the finished variation to the path in
each a, ie, path(a) ← path(a);L and add P to demerits(a).
If this is the first variation in the variation block, we save the totals from the beginning of the
document to the current point in H̄first, S̄+

first, and S̄−
first for later use.

Otherwise, we also update the totals stored in all a ∈ A with the height difference between
the current and the first variation path, ie, H̄first − H̄ci

, etc. This way, later on cola,b for some
breakpoint b after the variation block can still be simply calculated by subtracting the totals
at b from the totals at a, ie, the calculation is transparent to the path by which b was reached.
Finally, we save away the updated active node list A. We then restore the context we were in
before the first variation, ie, A ← Asaved and we restore H̄start, S̄+

start, and S̄−
start as the current

totals. We then select a new label L and set P ← Pci for the next variation path. Then, we
proceed to xi+1.
Case xi = ci with type(ci) = finish The end of the variation block has been reached. We
update the active node list as described in the switch case and then combine it with the active
node lists saved earlier. This will then form the complete new active node list going forward.
All that remains to do otherwise, is to restore the totals to the values at the end of the first
variation (as the active nodes in all other variations have been adjusted to pretend this is
correct). These values have been previously recorded as H̄first, S̄+

first, and S̄−
first.

Starting from the final active node a when finishing the algorithm, we arrive at the optimal
solution for the whole document by determining the list of active breaks that leads to this node and
examining all selected variation paths as recorded in path(a). The latter is an integral part of the
solution as many variation blocks will end up between 2 chosen breakpoints, yet it is important
to know which path was used in the construction since we have to replicate that decision in the
typesetting phase (Phase 4).

4.6 Complexity of the extensions
It is easy to see that both extensions do not change the overall complexity of the algorithm, ie, it
stays O(m2) in the general case and O(m) if the column height is constant after a certain point.

In the double spread case, the maximum length of the active list will have an additional factor
of 3 × number of spread columns due to the variability when starting a new spread and the fact
that we need to distinguish active nodes for different columns on a spread.

The situation with variation blocks is worse, as the number of active nodes depends on the
number of paths through the variation sets seen along the way. The number of different paths
through variations v1, … , v𝓁 is

∏𝓁
i=1 wi with wi being the number of “ways” through variation

set vi. Thus, this is exponentially growing in 𝓁, but, fortunately, 𝓁 is bounded by the number of
breakpoints that can fit on a single column. Therefore, this product is actually also of complexity
O(1), although unfortunately, with a much larger constant if we have columns with many variable
paragraphs; see Section 4.7.

In case of constant column heights Ci, the overall complexity is O(m) for the base algorithm,
because it is possible to collapse all active nodes associated with breakpoint b into one, regard-
less of the column they did end. This limits the maximum length of the active node
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list so that it becomes a constant in the complexity calculation. This argument also holds true
for the variation set extension (with the small practical problem that the actual constant is
fairly large).

In case of the double spread extension, we have dependencies between different columns;
therefore, a solution for column one is not necessarily a solution for all other columns. Never-
theless, collapsing is also possible with the only difference that we have to keep the best feasible
candidate for each combination of Ta and Va in the running. Again, this makes the length of
the active node list independent from m so that the overall complexity of the algorithm drops
to O(m).

4.7 Computational experience
To gain experience with the behavior of the algorithm and its extensions, it was tested on different
types of novels. A few of these documents and the respective findings are listed in Table 1. They
differ in size, average paragraph length, frequency of headings, complexity, and other aspects and
are a good representation of the complete set of documents tested. These documents are “Alice's
Adventures in Wonderland” by Lewis Carroll, “Call of the Wild” by Jack London, “Fairy Tales”
by the brothers Grimm translated into English by Edgar Taylor and Marian Edwardes, “Pride and
Prejudice” by Jane Austen, and “The Old Curiosity Shop” by Charles Dickens.

All documents have been set in 2 columns with a width of 8 cm. Each column could hold
46 lines of text and the paragraph requirements have been fairly strict: No widows or orphans and
only a small amount of flexibility (+1pt) for the paragraph separation. This means that in each
column, one could gain a flexibility of up to 2 lines (but only when there are 8 or more paragraphs
in the column and we accept a stretch of up to 3 times the nominal value, which corresponds to
a badness of 2700).

This type of paragraph flexibility (indicated by “flex” in the table) is rather uncommon when
typesetting novels, as there one usually tries to keep all text lines on a grid. However, it is often
used with technical documentation that contains objects of sizes that differ from a normal text
line height. It is therefore the default used by

For comparison, all trials have also been run without allowing for any flexible space between
paragraphs (this is indicated by “strict” in the table). Obviously, this means that the pagina-
tion algorithm has (even) fewer options to choose from. Thus, with greedy algorithm, we
see more “ugly” columns and with the optimizing algorithm, we see additional cases where the
algorithm is unable to find any solution at all.

The first row for each document in the table gives the results when processing the document
using the standard pagination, ie, a greedy algorithm and in all cases, there are a large
number of bad column breaks that would require manual attention (between 4% (Carroll) and
16% (London) of all columns).

The second row for each document then shows the results from greedy algorithm but
without allowing any flexibility between paragraphs. In this case, the number of issues rises up
to 40% of all columns (Carroll) and between 15% and 25% for all others.

The base algorithm (ie, optimizing across the whole document but without adding any addi-
tional flexibility through an extension) shows a maximum active list length of 37, 9(!), 22, 42,
and 41 (flex) and 6, 2, 20, 2, and 2 (strict), respectively. As a column with 46 lines would
have at most that many breakpoints, these values are in line with expectations, ie, the inher-
ent galley flexibility contributes only a very small factor; thus, only with Austen and Dickens,



MITTELBACH 37

TA
B

LE
1

D
oc

um
en

tp
er

fo
rm

an
ce

us
in

g
di

ffe
re

nt
al

go
rit

hm
ex

te
ns

io
ns

D
oc

um
en

t
A

ct
iv

e
Li

st
Pa

ra
gr

ap
hs

A
va

ila
bl

e
Lo

os
en

es
sa

Ve
rt

ic
al

B
ad

ne
ss

b
R

un
C

ol
um

ns
B

lo
ck

s
M

ax
A

ve
ra

ge
To

ta
lV

ar
ia

bl
e

−
1/

0
−

1/
1

−
1/

2
0/

1
0/

2
G

oo
d

B
ad

U
gl

y
ti

m
e,

s

A
lic

e
in

W
on

de
rl

an
d

72
83

3
69

0
2+

1
<

1
gr

ee
dy

,s
tr

ic
t

72
40

4
1+

27
ba

se
,f

le
x

–
69

43
37

12
no

so
lu

tio
nc

ba
se

,s
tr

ic
t

–
69

43
6

1
no

so
lu

tio
nc

+
sp

re
ad

,f
le

x
–

69
43

43
2

12
2

no
so

lu
tio

nc

+
sp

re
ad

,s
tr

ic
t

–
69

43
10

2
no

so
lu

tio
nc

+
va

ria
tio

ns
,f

le
x

74
d

94
73

60
2

55
11

1
6

15
0

89
1

73
1

–
≈

6
+

va
ria

tio
ns

,s
tr

ic
t

–
94

73
26

1
19

no
so

lu
tio

nc

+
va

ria
tio

ns
,s

pr
ea

d,
fle

x
72

94
73

70
76

49
6

71
1

–
≈

10
+

va
ria

tio
ns

,s
pr

ea
d,

st
ric

t
70

d
94

73
15

66
16

9
70

–
–

≈
5

C
al

lo
ft

he
W

ild
78

34
0

64
1

9+
4

<
1

gr
ee

dy
,s

tr
ic

t
78

62
0

0+
16

ba
se

,f
le

x
–

91
48

9
2

no
so

lu
tio

nc

ba
se

,s
tr

ic
t

–
91

48
2

1
no

so
lu

tio
nc

+
sp

re
ad

,f
le

x
78

91
48

26
3

13
4

78
–

–
≈

4
+

sp
re

ad
,s

tr
ic

t
79

d
91

48
41

14
79

–
–

≈
4

+
va

ria
tio

ns
,f

le
x

78
14

97
0

26
3

68
13

9
11

3
0

12
4

1
78

–
–

≈
6

+
va

ria
tio

ns
,s

tr
ic

t
78

14
97

0
26

3
63

78
–

–
≈

5
+

va
ria

tio
ns

,s
pr

ea
d,

fle
x

78
14

97
0

31
56

70
4

78
–

–
≈

12
+

va
ria

tio
ns

,s
pr

ea
d,

st
ric

t
78

14
97

0
31

56
63

7
78

–
–

≈
11

G
ri

m
m

's
Fa

ir
y

Ta
le

s
23

6
10

41
21

2
6

6+
12

<
2

gr
ee

dy
,s

tr
ic

t
23

6
19

8
1

0+
37

ba
se

,f
le

x
–

27
90

7
22

4
no

so
lu

tio
nc

ba
se

,s
tr

ic
t

–
27

90
7

20
1

no
so

lu
tio

nc

+
sp

re
ad

,f
le

x
23

4d
27

90
7

48
5

31
9

23
4

–
–

≈
14

+
sp

re
ad

,s
tr

ic
t

–
27

90
7

14
6

12
no

so
lu

tio
nc

+
va

ria
tio

ns
,f

le
x

23
9d

59
11

0
43

7
92

44
1

10
50

21
31

8
42

23
9

–
–

≈
15

+
va

ria
tio

ns
,s

tr
ic

t
23

6
59

11
0

42
2

86
23

6
–

–
≈

14
+

va
ria

tio
ns

,s
pr

ea
d,

fle
x

23
6

59
11

0
55

32
10

30
23

6
–

–
≈

67
+

va
ria

tio
ns

,s
pr

ea
d,

st
ric

t
23

7d
59

11
0

49
80

96
8

23
7

–
–

≈
55

(C
on

tin
ue

s)



38 MITTELBACH

TA
B

LE
1

(C
on

tin
ue

d)
D

oc
um

en
t

A
ct

iv
e

Li
st

Pa
ra

gr
ap

hs
A

va
ila

bl
e

Lo
os

en
es

sa
Ve

rt
ic

al
B

ad
ne

ss
b

R
un

C
ol

um
ns

B
lo

ck
s

M
ax

A
ve

ra
ge

To
ta

lV
ar

ia
bl

e
−

1/
0

−
1/

1
−

1/
2

0/
1

0/
2

G
oo

d
B

ad
U

gl
y

ti
m

e,
s

Pr
id

e
an

d
Pr

ej
ud

ic
e

31
5

21
27

29
1

8
7+

9
<

2
gr

ee
dy

,s
tr

ic
t

31
5

22
9

14
0+

73
ba

se
,f

le
x

31
6d

34
64

5
42

14
31

6
–

–
≈

10
ba

se
,s

tr
ic

t
–

34
64

5
2

1
no

so
lu

tio
nc

+
sp

re
ad

,f
le

x
31

2d
34

64
5

48
6

34
7

31
2

–
–

≈
17

+
sp

re
ad

,s
tr

ic
t

–
34

64
5

25
4

no
so

lu
tio

nc

+
va

ria
tio

ns
,f

le
x

31
5d

56
86

1
63

3
73

48
3

10
51

6
39

7
19

31
5

–
–

≈
16

+
va

ria
tio

ns
,s

tr
ic

t
31

4d
56

86
1

63
3

59
31

4
–

–
≈

14
+

va
ria

tio
ns

,s
pr

ea
d,

fle
x

31
4d

56
86

1
75

96
83

7
31

4
–

–
≈

58
+

va
ria

tio
ns

,s
pr

ea
d,

st
ric

t
31

4d
56

86
1

75
96

76
6

31
4

–
–

≈
45

Th
e

O
ld

C
ur

io
si

ty
Sh

op
55

4
40

97
52

4
12

9+
9

<
3

gr
ee

dy
,s

tr
ic

t
55

4
42

1
12

0+
12

1
ba

se
,f

le
x

55
5d

60
48

0
41

24
55

5
–

–
≈

17
ba

se
,s

tr
ic

t
–

60
48

0
2

1
no

so
lu

tio
nc

+
sp

re
ad

,f
le

x
55

6d
60

48
0

48
7

35
9

55
6

–
–

≈
32

+
sp

re
ad

,s
tr

ic
t

–
60

48
0

22
3

no
so

lu
tio

nc

+
va

ria
tio

ns
,f

le
x

55
8d

91
54

7
10

84
74

76
8

65
33

2
65

3
15

55
8

–
–

≈
25

+
va

ria
tio

ns
,s

tr
ic

t
55

6d
91

54
7

67
6

63
55

6
–

–
≈

22
+

va
ria

tio
ns

,s
pr

ea
d,

fle
x

56
0d

91
54

7
10

93
2

85
1

56
0

–
–

≈
11

6
+

va
ria

tio
ns

,s
pr

ea
d,

st
ric

t
55

5d
91

54
7

88
32

79
9

55
5

–
–

≈
10

0

a A
co

un
to

fp
ar

ag
ra

ph
s

th
at

ca
n

be
af

fe
ct

ed
by

se
tti

ng
sp

ec
ifi

c
lo

os
en

es
s

va
lu

es
.F

or
ex

am
pl

e,
th

e
co

lu
m

n
of

−
1/

2
co

un
ts

al
lp

ar
ag

ra
ph

s
th

at
co

ul
d

be
sh

or
te

ne
d

by
1

lin
e

an
d

ex
te

nd
ed

by
up

to
2

lin
es

.
b Ba

dn
es

so
fc

ol
um

ns
:“

G
oo

d”
m

ea
ns

th
ec

ol
um

n
m

at
er

ia
li

ss
tr

et
ch

ed
w

ith
in

th
es

pe
ci

fie
d

lim
its

(b
<

20
00

);
“b

ad
”m

ea
ns

a
no

tic
ea

bl
es

tr
et

ch
(2

00
0
≤

b
<

40
00

)a
nd

“u
gl

y”
m

ea
ns

th
at

th
e

sp
ac

e
in

th
e

co
lu

m
n

is
st

re
tc

he
d

m
or

e
th

an
3.

4
tim

es
its

av
ai

la
bl

e
fle

xi
bi

lit
y

(4
00

0
≤

b)
or

is
in

fin
ite

ly
ba

d
in

ey
es

(b
=

10
00

0)
in

di
ca

te
d

by
th

e
se

co
nd

va
lu

e.
c Th

e
pa

gi
na

tio
n

al
go

rit
hm

ra
n

ou
to

fo
pt

io
ns

(a
ct

iv
e

lis
te

m
pt

y)
an

d
pr

od
uc

ed
on

e
or

m
or

e
ov

er
fu

ll
co

lu
m

ns
as

an
em

er
ge

nc
y

fix
.

d Th
e

op
tim

iz
ed

so
lu

tio
n

ha
sa

di
ffe

re
nt

nu
m

be
ro

fc
ol

um
ns

co
m

pa
re

d
to

th
e

de
fa

ul
t

so
lu

tio
n.



MITTELBACH 39

we see a maximum close to 46. This is due to the fact that these documents are fairly long
(several hundred columns) and have relatively short paragraphs so that the paragraph flexibil-
ity accumulates and some breakpoints end up being candidates for ending different columns.
At the same time, we see that the maximum drops sharply if the paragraph flexibility is
removed.

The very low flex value for London is due to the fact that this document has very long para-
graphs (average of 4 per column) and thus is unable to build up any significant flexibility that
makes the active list grow toward its boundary.

It is therefore also not surprising that the base algorithm does not find a solution (except with
Austen and Dickens when using flex), as the number of alternatives to consider are not high
enough to resolve all obstacles resulting from widows and orphans.

When applying the spread extension, the length of the active list gets bounded by 46× 3× 4 =
552; thus, again, the observed maxima of 432, 263, 485, 486, and 487 (flex) are in line with
expectations. Without flex, the maxima are also higher than before but nowhere close to the
highest possible value. It may appear surprising that this additional flexibility does not result
in a solution for Carroll, but this is due to the fact that this document contains an unbreak-
able object of nearly the height of a column so that it requires a much higher amount of
flexibility to move this out of a break position. Figure 1 on page 6 shows these problematic
pages.

As discussed in Section 4.6, the factor by which the active node list can increase in case of
paragraph variations is basically the product

∏𝓁
i=1 wi, where the wi is the number of different

ways one can get through the variation set vi, and 𝓁 is the number of variation sets in the current
column. The majority of the variation sets in the texts by Carroll and London have w = 2 and only
a few 3. Grimm and Austen on the other hand have 113 and 76 variation sets with w = 3 or 4,
respectively. However, Carroll's paragraphs are much shorter on average, thus more fit on a page
and larger values for 𝓁 are likely. Thus, seeing a factor of 16, 30, 20, 16, and 26, respectively, for
the 5 documents again fits with expectations.

With the double spread extension, we vary the column height by 1 line and given 46 lines
per column introduce an additional flexibility of roughly ±2.2%. The important aspect is that in
contrast to variation sets this flexibility will be available on all columns and thus the change in the
active node list length should be fairly uniform across all documents. In contrast, the paragraph
variation extension will only make a noticeable difference in that length when several variable
paragraphs are close together. Again, we can observe this difference: with the spread extension,
the average and the maximum are fairly close to each other, whereas the average length when
applying paragraph variations is noticeably smaller.

When running the algorithm in its current prototype implementation with both extensions
applied, we can see a time increase of a factor of 15 to 100 compared to a run using standard

While this sounds large, we have to realize that this means less than a second per page for
a globally optimized document. When the author started to work with processing time for a
single page was often 30 seconds and more. Thus, global optimization, even with additional bells
and whistles added, has become a workable option.

5 CONCLUSION AND FURTHER WORK

The main contribution of this paper is the definition and implementation of a general framework
for experimenting with globally optimized pagination algorithms. This framework will enable
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researchers to quickly test out new strategies for pagination and make them available to a larger
audience with ease.†††††

All constraints are parameterized so that experimenting with different value combinations is
a simple matter of adjusting the values in a configuration file. More complex adjustments, such
as supplying different objective functions or a different method to calculate the column badness,
can be done by replacing a Lua-function with new code. As Lua is an interpreted language that
code can be loaded at runtime, ie, as part of the configuration as well.

Experiments with a base algorithm for globally optimized pagination have shown that the rel-
ative performance hit, as compared with a greedy algorithm, is neglectable with today's powerful
computer systems (ie, processing time increases by a factor of < 8, which means 10 instead of
1.3 seconds for a document such as Austen). However, with many documents (that do not con-
tain enough flexible vertical space), the algorithm will run out of alternatives to optimize and thus
manual correction, just as with the greedy algorithm, will still be necessary.‡‡‡‡‡

For successful global optimization, it is therefore important to develop methods that add addi-
tional flexibility to the pagination process. In this paper, we introduced 2 such methods. The
approach of running columns on double spreads 1 line short or long and the use of variants in the
text. The latter was implemented by automatically providing all paragraph variants (ie, paragraphs
formatted with different numbers of lines), whenever this can be done without compromising the
quality on the micro-typography level beyond a specified tolerance.

When applying the algorithm with the extensions, we add enough additional flexibility to fully
optimize (nearly) every document without any manual intervention.§§§§§ In addition, the price
to pay is acceptable if it avoids hours of iterative tinkering that are otherwise necessary when
manually optimizing the results of a greedy algorithm.

Moreover, in fact, what is typically been done to manually resolve such issues is precisely what
the extensions will automatically integrate into the algorithm: redoing some paragraphs to make
them longer or shorter and running some columns long or short combined with placing explicit
breaks in strategic places.

The base algorithm outlined in this paper does not handle additional auxiliary input streams
such as floats (which of course raises the complexity further). As there are quite different models
possible (some of them touched upon in Section 1.4), such work should be provided as extensions
to the base algorithm, to enable easy comparison between different approaches. Results from such
types of extensions are presented in the work of Mittelbach.13

Other interesting research topics are alternative approaches for limiting the search space in
meaningful ways, or strategies that only locally consider variants if the pagination runs out of
good options.

The current algorithm assumes that columns have a defined size (which can vary from col-
umn to column but is otherwise fixed) and that these columns are filled sequentially. This means
that filling strategies that balance material across columns are not supported and cannot be opti-
mized by the algorithm. It would therefore be interesting and important to develop alternative or
extended algorithms that support these important types of designs as well.

†††††The framework will eventually become part of the standard distributions.
‡‡‡‡‡There is still a huge advantage: The number of issues will be noticeably smaller and resolving them normally does
not require an iterative process, which is the case with the greedy algorithm.
§§§§§It is certainly possible to construct documents that cannot be optimized even then. However, for most documents
even using just one of the extensions will be sufficient.
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APPENDIX : PROOF THAT THE GREEDY PAGINATION IS THE SHORTEST
PAGINATION ASSUMING A SUITABLE MEASURE

In Section 1.1, we remarked that it is easy to prove that the greedy pagination of a document (ie,
the one that always uses the maximum amount of material possible) will be the shortest pagina-
tion possible under a suitable definition of “shortest.” The proof of this statement is given in the
following Lemma.

Lemma 1. Let b0, b1, … , bm be the sequence of all possible breakpoints of some document with
the restriction that the distance between 2 consecutive breakpoints is always strictly positive (ie,
bi < bi+1). Then, the greedy pagination of this document will always be the “shortest” pagination
in the sense that it will either has less pages than any other pagination or it will have the same
number of pages but a last page with less material.

Proof. Let g0, g1, … , gn be the greedy pagination and let us assume that there exists a non-
greedy pagination x0, x1, … , xn′ that is shorter in the above sense. We have b0 = g0 = x0 (start
of document) and bm = gn = xn′ (end of document).

If n′ < n, ie, if the greedy pagination has more pages than the x-pagination, then there
must exist an index k with xk ⩽ gk < gk+1 < xk+1, ie, there exists a page in the x-pagination
that contains at least 2 breakpoints from the greedy pagination. However, this contradicts
the assumption that the g-pagination was greedy as gk+1 could be replaced by xk+1 and thus
extending page k + 1 in the g-pagination.

Given that x0 = g0 the same argument applies if n = n′ and xn−1 > gn−1 (ie, the last page
has less material in the x-pagination). In that case there also exists at least one index k with
xk ⩽ gk and xk+1 > gk+1, which, again, contradicts that the g-partition was greedy.

If n = n′ and xn−1 = gn−1, then the last page is identical in both partitions, and we can
confine ourselves to the shorter document ending in xn−1 = gn−1. By repeatedly applying the
earlier argument, we will then eventually show that the g-partition is not greedy or that both
partitions are identical in all breakpoints, ie, are, in fact, the same partition.

This result may appear somewhat surprising, as it seems to be contradicted by the fact that
different line breakings of a paragraph (which is an analogue problem) can result in different
paragraph heights and there the greedy line breaking may not produce the paragraph with the
shortest height. However, this is only true because we apply a different measure in that case: We
are looking at the height of a paragraph, which is the sum of the heights of all lines (plus their
separations) and not at the number of lines produced. As elements in the paragraph may have
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different heights it is possible that changes in line-breaking change the overall height and thus
the result, if the height is used as the measure.

However, if we translate the measure defined in Lemma 1 to the line-breaking scenario, then
it would state that the greedy algorithm results in a line breaking with a minimal number of lines
and in case of equal number of lines with less material in the last line and for that measure the
statement from Lemma 1 is also true for line breaking.

This measure for the length of a pagination as used in the above Lemma is reasonable, as it
means that we assume that the width of all text blocks in the galley are of identical width, or more
precisely, that their width is not exceeding the page width, ie, that the length of the pagination is
not affected by the width of individual pages.
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