
26 TUGboat, Volume 41 (2020), No. 1

Creating accessible pdfs with LATEX

Ulrike Fischer

Abstract

This article describes the current state and planned
actions to improve accessibility of pdfs created with
LATEX, as currently undertaken by the LATEX Team.

1 Accessibility of pdf

The pdf language is at its core a page description
programming language. It describes very accurately
how text and graphical elements look and where they
are placed on a page. But it doesn’t describe the
semantic meaning of the elements and the reading
order; by looking at the code there is no way to
know if a text is a section heading or some water-
mark or a footnote or if it belongs to a tabular. You
can’t know where a sentence has its continuation on
another page or how many words a text contains,
and sometimes it is even impossible to identify the
characters; you only see some glyph index number
and copy & paste can give gibberish.

All this is not a problem as long as the pdf is
merely meant for printing or viewing but it restricts
its use for digital processing like copy & paste, auto-
matic extraction of billing data, reflowing, or using
the pdf with a screen reader. For such uses you need
accessible, structured, extractable content.

“Accessibility” as a standard is specified in PDF/

UA. It is also included in other standards, notably
PDF/A-1a and PDF/A-2a (the “a” stands for acces-
sible). The standards contain a number of require-
ments to help in retrieving the content for further
processing; for example, that every character has a
Unicode representation (no gibberish when copy &
pasting), that word spaces are correctly marked up
(so that reflowing works), that the language of the
document and the text is declared (so a screen reader
can guess the pronunciation), that pictures have sen-
sible alternative descriptions. And most importantly:
that the document is tagged. This last requirement
is responsible for adding structure information to the
content. It marks up content as section or tabular
cell or list item. This improves navigation in the
document with, for example, a screen reader, but
also exporting to other formats like XML.

TUG maintains a web page with links to relevant
standards, articles and packages [3].

First published in ArsTEXnica 28 (Oct 2019), pp. 135–139.
Reprinted with permission.

2 Creating a tagged pdf

Tagging consists of two main tasks. First, in the
stream object of a page every bit of content must be
marked and labelled with a number MCID n.

The following listing shows a small example.
The BDC and the EMC lines are the start and end
markers needed for tagging. The /H1 indicates that
the content is part of a sectioning element.

stream

/H1 <<MCID 0>> BDC

BT

/F17 14.3462 Tf 124.802 706.129

Td [(0.1)-1100(Section)]TJ

ET

EMC

In the second step a number of pdf objects must
be created to describe the structure tree. Every
object contains references to the parent /P and to
one or more kid elements /K. The leaf nodes are the
MCID n created in the first step. A typical object
looks roughly like this:

5 0 obj

<<

/Type /StructElem

/S /H1

/P 4 0 R

/K <</Type /MCR /MCID 0>>

>>

endobj

This is a structure element of the type /H1 (and
so a sectioning element) and it has one kid element,
the text of the section marked above.

Beside this a number of additional settings and
objects must be added to the pdf for cross-referencing
and “administration”.

3 Changing LATEX

Measured in computer time, LATEX is quite old. LATEX
is not only a format; it was always meant to be ex-
tended by packages and classes, and over time, many
people have contributed to LATEX. It has a quite
large user base with very varied demands regarding
stability, features and development. LATEX is still
used with a variety of engines: pdfTEX, X ETEX, Lua-
TEX, (u)pTEX and backends (dvips, dvipdfmx). One
could compare LATEX to an old city; lots of houses
built at different times in different styles by various
people, some modern, some older, some are in a good
state, others are falling apart but nevertheless home
to someone.

This means that changing LATEX is not easy;
we can’t break lots of packages and old documents
even if the reward is accessible pdfs. And we have to
consider that documents must be compilable in TEX

Ulrike Fischer



TUGboat, Volume 41 (2020), No. 1 27

systems of varying age, for example when uploading
them to a journal.

Thus, a very important aspect of the project is
to develop a long term change strategy and manage
integration of core support across the LATEX universe.

4 First steps towards tagging

Tagging pdf with LATEX has been on the agenda
for quite some time. Babett Schalitz wrote a thesis
about it in 2007, and Ross Moore has given a number
of talks and articles at TUG conferences since then.
When I considered working on the topic some time
ago I got code from both, and decided rather quickly
that first some work on the basics was needed.

Tagging should, in my opinion, not be done by
creating a package that patches all sorts of com-
mands in other packages; this is much too fragile. It
needs proper support in the LATEX kernel and proper
support in the main classes and packages. I also
thought that to identify the needed support and to
test implementations and interfaces, concrete code
was needed. So I wrote the package tagpdf. The
package offers core commands to tag a document and
to activate some of the other requirements needed to
make a pdf accessible. The low-level code to mark
up a text as a section looks roughly like this:

\tagstructbegin{tag=H1}

\tagmcbegin{tag=H1}

Section

\tagmcend

\tagstructend

The \tagstructXX commands create the struc-
ture, while the \tagmcXX commands add the MCID

marks to the page stream.
At present, the tagpdf package works with

pdfLATEX and LuaLATEX, and LuaLATEX gives the
best results, as one doesn’t have to worry about the
behaviour at page breaks. However, with the help
of the work on the pdfresources project described
below, it should be possible to extend it to other
engines and backends.

5 LATEX-dev

Another important step towards accessible pdfs was
the implementation of the latex-dev format by the
LATEX team and the maintainers of TEX Live and
MiKTEX; latex-dev is a pre-release of LATEX from
the development branch and made available through
CTAN. It allows users of a current TEX distribu-
tion to test their documents and code against an
upcoming LATEX release by simply using their pre-
ferred latex with the suffix -dev; pdflatex-dev,
lualatex-dev, xelatex-dev, etc. (For more infor-
mation, see [1].)

latex-dev has not been created solely with tag-
ging in mind, but it will help us to coordinate and
test changes with package and class authors, so it is
an important part of the project.

6 PDF resource management

When tagging a pdf one has to add a number of
settings to pdf dictionaries which can be described
as “global resources”. As already mentioned in an
answer [2], LATEX has no interfaces for this:

Unhappily, the LATEX format has overslept
PDF development quite entirely. Managing
global resources is the prime task for an
OS, format in TEX speak. Because of the
missing resource manager, both [tikz
and transparent] packages do what most
packages do, they think they are alone and
add their stuff to the resource, . . .

With tagging entering the scene it was clear that
something needed to be done to remedy this problem
and so the pdfresources project in the LATEX github
was created; it contains a (still quite experimental)
expl3-style interface which offers commands to add
contents to pdf resources in a controlled way. It also
offers backend-independent interfaces to a number of
core commands needed when writing objects to a pdf.
The package works with the main engines (pdfTEX,
LuaTEX and X ETEX) and backends (dvipdfmx and —
more or less — dvips).

The main task for the next months is to test
the code, to integrate it into the kernel and to adapt
existing packages to use it. The number of packages
which should use the pdf resource manager is not
very large but includes important packages such as
hyperref, tikz, media9, pdfx.

7 Adapting the engines

Another open issue that emerged during the last year
was missing functionality in engines and backends.
For example pdfTEX was not ready for pdf 2.0; it
has no command to set a major pdf version. (This
will be remedied in TEX Live 2020.) As pdf 2.0 adds
important features needed for accessibility (the con-
cept of associated files) this is clearly something that
should be changed. It would be also useful if pdfTEX
could execute code at shipout time as can be done
with luatex with \latelua. The dvipdfmx backend
and dvips are missing additional color stacks.

8 Adding hooks

As already shown in sections 2 and 4, tagging a pdf
requires adding quite a number of commands. Obvi-
ously, all the standard structures should if possible
add the needed code automatically. For this, hooks

Creating accessible pdfs with LATEX



28 TUGboat, Volume 41 (2020), No. 1

are needed at the right places. The “right place”
has firstly a technical meaning; with the exception
of LuaTEX, the tagging code inserts whatsits; this
means it can change the output if used in the wrong
place (as sometimes anchors set by hyperref do).

But more importantly the “right place” means
that we need to identify the owner of the code which
should insert the tagging code. For example, sections
are generally created with \@startsection. So this
kernel command looks like a natural place to insert
hooks for tagging commands. On the other hand,
chapters and parts have special commands created
by the classes. Does it make sense if the kernel han-
dles the one part and the classes the other? Other
examples are bibliographies and glossaries; packages
like biblatex and glossaries look like the natural
owner here — and both packages already have lots
of hooks which make it easy to implement tagging —
but both also use standard structures like lists or
tabulars and additions to these generic environments
could clash with their needs.

This means that besides a pdf resource manager
we also need a hook management. And we need
lots of real use cases and examples to be able to
investigate the various dependencies.

9 Mathematics

How to tag maths is still an open problem. There are
quite a number of possibilities to make it accessible.

• One is to attach the LATEX source code, ei-
ther as file or verbatim, with /ActualText to
the math structure. For a number of environ-
ments this can be automated quite well as the
axessibility package demonstrates (but it is
difficult for inline math input with $...$). The
usability with a screen reader is not bad — even
if not every word was correctly read aloud in my
tests — but it requires that the user understands
LATEX input syntax, and with large equations
and complicated grouping it can be quite diffi-
cult to follow and to navigate through subequa-
tions. Usability can be improved if one invests
the time to manually split the math and add
explaining words.

• Another possibility is to mark all the maths bits
with MathML structure names. At least with
LuaTEX this can probably be done more or less
automatically — proofs of concept are the Con-
TEXt format and TEX4ht. But it is unknown
whether screen readers or other applications can
actually use the information.

• A third possibility is to convert the equation
to MathML, for example with MathJax, and
attach it as an associated file to the structure.

But here too it is unclear how such MathML

can be processed by the pdf consumer. It is also
unknown whether the presentation or content
flavour of MathML should be used in this case.

The pdf standard requires that glyphs and sym-
bols are mapped to Unicode. Here too variants
are possible; for example, a could be mapped to
U+1D44E (Mathematical Italic Small A) or U+0061

(Latin Small Letter A);
∫

could mapped to U+222B

(Integral) or to \int (as is done by the package mmap).
The first alternative sounds more Unicode-like but
actually the screen readers don’t seem to know what
to do with the symbols.

The main task here is to get more information
to be able to decide about which route to follow.

10 Contacts

Quite a number of questions and projects circle
around the pdf specification, the needs of users and
of pdf consumer applications. To get tagging work-
ing it is not enough to know how TEX works. So one
important part of the tagging project is to get in
contact with people having inside knowledge about
pdf and pdf consumer applications in various pdf
related organizations and to promote the project in
the TEX world to get user feedback.

11 Summary

Adding tagging facilities to LATEX is a large project
with many aspects. Happily it doesn’t have to be
done in one large jump; with the tagpdf package it
is already possible for adventurous users with a bit
of knowledge in TEX programming to tag quite large
documents. Despite the clear warning in the docu-
mentation that it isn’t meant for production, I have
already received feedback about several successful
uses. This gives hope that it can evolve to a stable
and usable system.

References

[1] LATEX. LATEX development formats are now
available, 2019. https://latex-project.org/

news/2019/09/01/LaTeX-dev-format/

[2] H. Oberdiek. TikZ and transparent

incompatibility, 2015. https://tex.

stackexchange.com/a/253417/2388

[3] TUG. PDF accessibility and PDF standards,
2019. https://tug.org/twg/accessibility/

� Ulrike Fischer
LATEX Project
Mönchengladbach, Germany
ulrike.fischer (at) latex-project.org

Ulrike Fischer


