40

Creating document commands: The good,
the bad and the ugly

Joseph Wright

Creating document commands in IMTEX has tradition-
ally involved a mix of \newcommand, semi-internal
kernel commands (like \@ifnextchar and \@ifstar)
and low-level TEX programming using \def. As part
of wider efforts to improve IATEX, the team have
over the past few years developed ideas for creating
document commands in the package xparse. In a
parallel article (on \NewDocumentCommand, on the
following pages), I've looked at how the xparse ideas
compare to the abilities of other packages.

The aims of xparse have always been two-fold:
to provide a clear way to create new commands, and
to provide a language to describe existing ones. It
is also intended to be as flexible as possible, so it
doesn’t impose artificial restrictions on syntax. That
comes at a cost, however: it can be (ab)used to create
commands that do not fit into the standard KTEX
pattern.

The ITEX kernel now integrates most, though
not all, of xparse into the kernel. That means the core
ideas are available out-of-the-box. This seems like a
good time, therefore, to look at the best ways to use
the abilities of xparse in making document commands.
I won’t look at the full detail, but rather pick out how
to, and how not to, create good document commands.

1 The Good

The IETEX kernel is very careful to have consistent
syntax for document commands. It uses only a small
number of the possible argument types, which I'll
describe in xparse terms:

e Mandatory (m) arguments in braces.

e Optional (o/0{<default>}) arguments in [],
which may have a default; in xparse terms we
can tell the difference between a missing optional
argument and one given with an empty [] pair.

e An optional star (s).

e Picture co-ordinates (r()), which are split into
x and y, so in xparse terms subject to
\SplitArgument.

Most of the time, the ITEX kernel makes argu-
ments [ong, which is shown as + in xparse syntax.

A star is always used as the first argument after
a command, so in some ways it looks like part of
the command name itself. Optional arguments are
almost always given before mandatory ones, and
most of the time there is only one. Where two are
used, for example with \makebox, it’s because the

Joseph Wright

doi.org/10.47397/tb/42-1/tb130wright-goodbad

TUGDboat, Volume 42 (2021), No. 1

second is strictly dependent on the presence of the
first.

Following the kernel, signatures (argument de-
scriptions) such as:

s om
s O{<default>} m m
omm

are ‘good’. You can use something like
s +m 0{0} +o +m

(with optional arguments after a mandatory one; this
is the syntax of \newcommand!) if you are careful, but
think very carefully.

There’s one syntax that’s not from the kernel
but is recommended where it applies: the beamer
overlay syntax, which is d<> in xparse terms. This
always comes first (other than a star), and is best re-
served for the ‘on X slides of Y’ idea in presentations
(doesn’t have to be using beamer).

xparse lets us create arguments using _ and ~,
similar to TEX’s core math mode syntax. Most of the
time, this should be reserved for math mode where
you need to emulate the TEX syntax but for some
reason need to grab the arguments yourself. This is
done using e{"_}.

2 The Bad

The above already shows we have quite a few com-
binations available. Things go bad when too many
combinations are used. For example:

e Multiple optional arguments where the second
or subsequent ones don’t strictly depend on the
earlier ones.

e Optional arguments using tokens other than []
(or <> for overlays).

e Testing for tokens other than * as ‘a special case’
(think things like +).

Almost always, complex setups using these types
of combination mean you need to rethink the syntaz.
In particular, multiple optional arguments tend to
be much better replaced by using a keyval approach.

3 The Ugly

Some ideas in xparse won’t be making it to the kernel:
these are definitely the Ugly. They’ll stay in a stub
xparse for historical reasons, and as they do describe
some syntax choices people have made, but in truth,
they should be avoided:

e Optional groups (g) in braces; breaks the KTEX
conventions badly.

e Arguments up to a left brace (1); useful at a low
level, but not in a document command.



TUGboat, Volume 42 (2021), No. 1 41

e Arguments up to a token (u); widely used in
programming, but again not in document com-
mands.

You might wonder why they are all there in the
first place: these were part of the more experimental
work in xparse, and those particular experiments have
shown we don’t want to enable such syntaxes even
for emulating existing commands.

4 A Fistful of Tokens

There are of course places where you need to go
outside of the xparse structures, particularly when
parsing specialist data. The popular TikZ graph-
ics system is one example; linguistic glosses are an-
other. But these are restricted contexts, normally
used within a dedicated environment where it is clear
that the ‘usual’ rules do not apply. Basically, if you
do this, you are on your own, so be sure to check the
balance of consistency versus compactness.

5 For a Few Tokens More

Using xparse syntax makes it much easier to have a
clear break between interface and implementation.
As such, the fact that it’s got more going on ‘beneath
the hood’ is worth it: it’s a lot easier to track what’s
happening. The move into the kernel will make
using xparse descriptions even easier to exploit, so it’s
important that users defining their own commands
give a little thought to the syntax they choose.

¢ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)
morningstar2.co.uk

Creating document commands: The good, the bad and the ugly



